2022新浙教版八年级上册《数学》知识点总结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022新浙教版八年级上册《数学》知识点总结.doc》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2022 新浙教版八 年级 上册 知识点 总结 下载 _八年级上册_浙教版_数学_初中
- 资源描述:
-
1、八年级知识点总结第一章三角形的初步知识三角形1、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。注:三角形具有稳定性。2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角
2、大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。4、三角形的面积三角形的面积=底高注:同底等高的三角形面积相等。三角形中的主要线段1、三角形中的主要线段有:三角形的角平分线、中线和高线。2、这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。而
3、三角形的高线在当ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。在以后我们可以给出具体证明。今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角
4、定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。(4)角角边定理:有两个角和其中一个角的对应边相等的两个三角形全等(可简写成“角角边”或“AAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2
5、)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。4.线段中垂线和角平分线的性质,基本尺规作图:作角的平分线,线段的中垂线,作一个角等于已知角,按给定条件作三角形。第二章 特殊三角形特殊三角形的定义、性质及判定三角形类型定义性质判定等腰三角形有两条边相等的三角形是等腰三角形,其中相等的两条边分别叫做腰,另一条边叫做底边,两腰的夹角叫顶角,腰和底边的夹角为底角1、 等腰三角形是对称图形,顶角平分线所在直线为它的对称轴2、 等腰三角形两底角相等,即在同一个等腰三角形中,等边对等角3、 等腰三角形的顶角平分线,底
6、边上的中线和高线互相重合,简称等腰三角形的三线合一1、(定义法)有两条边相等的三角形是等腰三角形2、如果一个三角形有两个角相等,那么这个三角形是等腰三角形,即,在同一个三角形中,等角对等边等边三角形三条边都相等的三角形是等边三角形,它是特殊的等腰三角形,也叫正三角形1、 等边三角形的内角都相等,且为602、 等边三角形是轴对称图形,且有三条对称轴3、 等边三角形每条边上的中线,高线和所对角的角平分线三线合一,他们所在的直线都是等边三角形的对称轴1、 三条边都相等的三角形是等边三角形2、 三个内角都等于60的三角形是等边三角形3、 有一个角是60的等腰三角形是等边三角形直角三角形有一个角是直角的
7、三角形是直角三角形,即“Rt”1、 直角三角形的两锐角互余2、 直角三角形斜边上的中线等于斜边的一半3、 直角三角形中 30角所对的直角边等于斜边的一半4、 直角三角形中两条直角边的平方和等于斜边的平方(勾股定理)1、 有一个角是直角的三角形是直角三角形2、 有两个角互余的三角形是直角三角形3、 如果一个三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形(勾股定理逆定理)等腰三角形 1. 有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。 2. 等腰三角形的性质: (1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分
8、线、底边上的中线、底边上的高相互重合。 3. 等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。 4. 等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60。 5. 等边三角形的判定: (1)三个角都相等的三角形是等边三角形; (2)有一个角是60的等腰三角形是等边三角形。 6. 含30角的直角三角形的性质: 在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。等边三角形(1)等边三角形的定义:三条边都相等的三角形叫等边三角形.(2)等边三角形的性质:等边三角形的三个角都相等,并且每个角都是60;等边三角形具有等腰三角形的所有性质
9、,并且每一条边上都有三线合一,因此等边三角形是轴对称图形,它有三条对称轴;而等腰三角形只有一条对称轴.(3)等边三角形的判定三条边都相等的三角形是等边三角形;有一个角等于60的等腰三角形是等边三角形;有两个角都等于60的三角形是等边三角形;三个角都相等的三角形是等边三角形.(4)两个重要结论在直角三角形中,如果一个锐角是30,那么它所对的直角边等于斜边的一半.在直角三角形中,如果一条直角边是斜边的一半,那么它所对的锐角等于30.两个重要结论的数学解释:已知:如图4,在ABC中,C90,则:如果AB2BC,那么A30;如果A30,那么AB2BC.直角三角形 1. 认识直角三角形。学会用符号和字母
10、表示直角三角形。 按照角的度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。通常用符号“Rt”表示“直角三角形”,其中直角所对的边称为直角三角形的斜边,构成直角的两边称为直角边。如果ABC是直角三角形,习惯于把以C为顶点的角当成直角。用三角A、B、C对应的小写字母a、b、c分别表示三个角的对边。 如果ABAC且A90,显然这个三角形既是等腰三角形,又是直角三角形,我们称之为等腰直角三角形。 2. 掌握“直角三角形两个锐角互余”的性质。会运用这一性质进行直角三角形中的角度计算以及简单说理。 3. 会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形。 4
11、. 掌握“直角三角形斜边上中线等于斜边的一半”性质。能通过操作探索出这一性质并能灵活应用。5在直角三角形中如果一个锐角是30,则它所对的直角边等于斜边的一半”。难点:1在直角三角形中如何正确添加辅助线 通常有两种辅助线:斜边上的高线和斜边上的中线。勾股定理及逆定理(一)勾股定理及其证明 勾股定理:直角三角形两直角边的平方和等于斜边的平方.符号语言:在ABC中,C=90(已知)证明:进行图形拼接用面积法证明. 制作四个全等的直角三角形,然后进行拼接,利用面积法理解勾股定理. (二)勾股定理的应用:(1)已知两边(或两边关系)求第三边;(2)已知一边求另两边关系;(3)证明线段的平方关系;(4)作
12、长为的线段.(三)勾股定理的逆定理如果三角形的三边长a、b、c满足那么这个三角形是直角三角形.1勾股定理的逆定理的证明是构造一个直角三角形,然后通过证全等完成;2勾股定理的逆定理实质是直角三角形的判定之一,与以前学的判定方法不同,它是用代数运算来证明几何问题,这是数形结合思想的最好体现,今后我们会经常用到.利用勾股定理的逆定理判别直角三角形的一般步骤:1先找出最大边(如c);2计算与,并验证是否相等.若,则ABC是直角三角形.若,则ABC不是直角三角形.注意:(1)ABC中,若,则C=90;而时,则A=90;时,则B=90.(2)若,则C为钝角,则ABC为钝角三角形.若,则C为锐角,但ABC不
展开阅读全文