2022新浙教版七年级上册《数学》知识点总结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022新浙教版七年级上册《数学》知识点总结.doc》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2022 新浙教版七 年级 上册 知识点 总结 下载 _七年级上册_浙教版_数学_初中
- 资源描述:
-
1、第一章 有理数及其运算1.整数:包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。正整数和负整数通称为自然数2.正数:都比0大,负数比0小,0既不是正数也不是负数。正整数、0、负整数、正分数、负分数这样的数称为有理数。数轴的三要素:原点、正方向、单位长度(三者缺一不可)。任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)3.相反数:只有符号不同的两个数互为相反数,互为相反数,0的相反数是0。在任意的数前面添上“-”号,就表示原来的数的相反数。在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
2、数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。0-1-2-3123越来越大 或 即:当是正数时,;当是负数时,;当=0时,5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|0对任何有理数a,都有|a|0若|a|=0,则|a|=0,反之亦然若|a|=b,则a=b对任何有理数a,都有|a|=|-a|6.比较两个负数的大小,绝对值大的反
3、而小。比较两个负数的大小的步骤如下:先求出两个数负数的绝对值;比较两个绝对值的大小;根据“两个负数,绝对值大的反而小”做出正确的判断。7.两个负数比较大小,绝对值大的反而小。8.数轴上的两个点表示的数,右边的总比左边的大。第二章 有理数的运算1.有理数加法法则:同号两个数相加,取相同的符号,并把绝对值相加。 异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两数相加得0. 一个数同0相加仍得这个数2.灵活运用运算律,使用运算简化,通常有下列规律:互为相反的两个数,可以先相加;符号相同的数,可以先相加;分母相同的数,可以先相加;几个数相加能得到
4、整数,可以先相加。3.加法交换律:4.加法结合律:5.有理数减法法则:减去一个数等于加上这个数的相反数。6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘积仍得0。7.有理数减法运算时注意两“变”:改变运算符号;改变减数的性质符号(变为相反数)8.有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。有理数的加减法混合运算的步骤:写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;利用加法则,加法交换律、结合律简化计算。(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数
5、应变成它本身的相反数。)9倒数:如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 等)10.有理数乘法法则: 两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。11.乘法交换律:12.乘法结合律:13.乘法分配律:乘法的交换律、结合律、分配律在有理数运算中同样适用。14.有理数乘法运算步骤:先确定积的符号;求出各因数的绝对值的积。乘积为1的两个有理数互为倒数。注意:零没有倒数求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。正数的倒数是正数,负数的倒数是负数。15.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。两个有理数相除,同号得正,异
6、号得负,绝对值相除。0除以任何数都得0,且0不能作除数,否则无意义。16.有理数的乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。指数底数幂 在中叫做底数,n叫做指数,读作的n次幂(或的n次方)。注意:一个数可以看作是本身的一次方,如5=51;当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。17.乘方的运算性质:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;任何数的偶数次幂都是非负数;1的任何次幂都得1,0的任何次幂都得0;-1的偶次幂得1;-1的奇次幂得-1;在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。18.有理数混合运算法则:先算乘方,
7、再算乘除,最后算加减。 如果有括号,先算括号里面的。19.混合运算顺序: 先算乘方,再乘除,后加减; 同级运算,从左到右进行; 如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。20.近似数和有效数字: 与实际相符的数,叫做准确数 与实际接近的数,叫近似数21.有效数字:一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数 字起到精确到那一位数字止,所有的数字 第三章 实数 1.一般地如果一个数的平方根等于a,那么这个数叫做a的平方根,也叫a的二次方根.一个正数有正负两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.正数的平方根称为算数平
8、方根.2 .实数定义:有理数与无理数统称为实数。3实数的分类: 无理数:无限不循环小数叫无理数。 有理数:整数和分数统称有理数。无理数定义:即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、和e(其中后两者同时为超越数)等。无理数是无限不循环小数。如圆周率、等。无理数性质:无限不循环的小数就是无理数。换句话说,就是不可以化为整数或者整数比的数性质1 无理数加(减)无理数既可以是无理数又可以是有理数性质2 无理数乘(除)无理数既可以是无理数又可以是有理数性质3 无理数加(减)有理数一定是无理数性质4 无理数乘(除)
9、一个非0有理数一定是无理数无理数与有理数的区别:1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如:4=4.0,=0.8,=0.33333而无理数只能写成无限不循环小数,比如:=1.414213562根据这一点,人们把无理数定义为无限不循环小数;2、所有的有理数都可以写成两个整数之比,而无理数不能。根据这一点,有人建议给无理数摘掉,把有理数改叫为“比数”,把无理数改叫为“非比数”。无理数的识别:判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。初中常见的无理数有三种类型:(1)
展开阅读全文