2022新人教版九年级上册《数学》第21章 一元二次方程 知识点总结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022新人教版九年级上册《数学》第21章 一元二次方程 知识点总结.doc》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2022新人教版九年级上册数学第21章 一元二次方程 知识点总结 2022 新人 九年级 上册 21 一元 二次方程 知识点 总结 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、一元二次方程知识点的总结知识结构梳理(1)含有 个未知数。(2)未知数的最高次数是 1、概念(3)是 方程。 (4)一元二次方程的一般形式是 。(1) 法,适用于能化为 的一元。 二次方程一元二次方程(2) 法,即把方程变形为ab=0的形式, 2、解法 (a,b 为两个因式), 则a=0或 (3) 法 (4) 法,其中求根公式是 当 时,方程有两个不相等的实数根。(5) 当 时,方程有两个相等的实数根。当 时,方程有没有的实数根。可用于解某些求值题 (1) 一元二次方程的应用 (2) (3) 可用于解决实际问题的步骤 (4) (5) (6) 知识点归类建立一元二次方程模型知识点一 一元二次方程
2、的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。注意:一元二次方程必须同时满足以下三点:方程是整式方程。它只含有一个未知数。未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。例 下列关于的方程,哪些是一元二次方程?;(3);(4);(5)知识点二 一元二次方程的一般形式一元二次方程的一般形式为(a,b,c是已知数,)。其中a,b,c分别叫做二次项系数、一次项系数、常数项。注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须
3、把它先化为一般形式。 (3)形如不一定是一元二次方程,当且仅当时是一元二次方程。例1 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。(1); (2); (3)例2 已知关于的方程是一元二次方程时,则 知识点三 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。一元二次方程的解也叫一元二次方程的根。知识点四 建立一元二次方程模型建立一元二次方程模型的步骤是:审题、设未知数、列方程。注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系。例 如图(1),有一个
4、面积为150的长方形鸡场,鸡场一边靠墙(墙长18m),另三边用竹篱笆围成,若竹篱笆的长为35m,求鸡场的长和宽各为多少?鸡场(只设未知数,列出方程,并将它化成一般形式。)因式分解法、直接开平方法知识点一 因式分解法解一元二次方程如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即若pq=0时,则p=0或q=0。用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。(3)令每个因式分别为0,得两个一元一次方程。(4)解这两个一元一次方程,它们的解就是原方程的解。关键点:(1)要将方程右边化为0;(2)熟练掌握多项式因式分解的方法,常用方
5、法有:提公式法,公式法(平方差公式,完全平方公式)等。 例 用因式分解法解下列方程:(1); (2); (3)。知识点二 直接开平方法解一元二次方程若,则叫做a的平方根,表示为,这种解一元二次方程的方法叫做直接开平方法。(1)的解是;(2)的解是;(3)的解是。例 用直接开平方法解下列一元二次方程(1); (2); (3)知识点三 灵活运用因式分解法和直接开平方法解一元二次方程形如的方程,既可用因式分解法分解,也可用直接开平方法解。例 运用因式分解法和直接开平方法解下列一元二次方程。(1); (2)知识点四 用提公因式法解一元二次方程把方程左边的多项式(方程右边为0 时)的公因式提出,将多项式
6、写出因式的乘积形式,然后利用“若pq=0时,则p=0或q=0”来解一元二次方程的方法,称为提公因式法。如:,将原方程变形为,由此可得出注意:在解方程时,千万注意不能把方程两边都同时除以一个含有未知数的式子,否则可能丢失原方程的根。知识点五 形如“”的方程的解法。对于形如“”的方程(或通过整理符合其形式的),可将左边分解因式,方程变形为,则,即。注意:应用这种方法解一元二次方程时,要熟悉“”型方程的特征。例 解下列方程:(1); (2)配方法知识点一 配方法解一元二次方程时,在方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种方法叫做配方,配方后就可以用因
7、式分解法或直接开平方法了,这样解一元二次方程的方法叫做配方法。注意:用配方法解一元二次方程,当对方程的左边配方时,一定记住在方程的左边加上一次项系数的一半的平方后,还要再减去这个数。例 用配方法解下列方程:(1); (2)知识点二 用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1) 在方程的左边加上一次项系数的一半的平方,再减去这个数;(2) 把原方程变为的形式。(3) 若,用直接开平方法求出的值,若n0,原方程无解。例 解下列方程:知识点三 用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为时,用配方法解一元二次方程的步骤:(1)先把二次项
展开阅读全文