2022新人教版八年级上册《数学》知识点复习提纲(最新).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022新人教版八年级上册《数学》知识点复习提纲(最新).doc》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2022 新人 教版八 年级 上册 知识点 复习 提纲 最新 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、第十一章:三角形1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。2.三角形按边分类3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。三角形的任意两边之差小于第三边。(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则abc或cba.已知三角形两边的长度分别为a,b,求第三边长度的范围:|ab|cab4. 三角形的高从ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做ABC的边BC上的高。三角形的三条高的交于一点,这一点叫做“三角形的垂心”。5. 三角形的中线连接ABC的顶点A和它所对的对边BC的
2、中点D,所得的线段AD叫做ABC的边BC上的中线。三角形三条中线的交于一点,这一点叫做“三角形的重心”。三角形的中线可以将三角形分为面积相等的两个小三角形。6. 三角形的角平分线A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。7. 三角形具有稳定性8. 四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。9. 三角形的内角和定理三角形的内角和为180,与三角形的形状无关。
3、10. 直角三角形两个锐角的关系直角三角形的两个锐角互余(相加为90)。有两个角互余的三角形是直角三角形。11. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。12. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。三角形的一个外角大于与它不相邻的任何一个内角。13.2个基本图形14. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角叫做外角。连接多边形不相邻的两个顶点的线段叫做多边形的对角线。一个n边形从一个顶点出发的对角线的条数为(n3)条,其所有的对角线条数为
4、1/2 n(n-3)。15. 凸多边形画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。16. 正多边形各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)要求会的题型:告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数方法:一个n边形从一个顶点出发的对角线的条数为(n3)条,其所有的对角线条数为 1/2 n(n-3)。 将边数带入公式即可。17. n边形的内角和定理n边形的内角和为 (n-2)18018. n边形的外角和定理多边形的外角和等
5、于360,与多边形的形状和边数无关。第十二章 全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形
6、全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对
7、顶角”第十三章 轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系 4.轴对称的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的
8、对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线 1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为_.点(x, y)关于y轴对称的点的坐标为_.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回
9、顾1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。 第十四章 整式乘除与因式分解一回顾知识点 1、主要知识回顾:幂的运算性质:amana
10、mn (m、n为正整数)同底数幂相乘,底数不变,指数相加 amn (m、n为正整数)幂的乘方,底数不变,指数相乘 (n为正整数)积的乘方等于各因式乘方的积 amn (a0,m、n都是正整数,且mn)同底数幂相除,底数不变,指数相减零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于l负指数幂的概念:ap (a0,p是正整数)任何一个不等于零的数的p(p是正整数)指数幂,等于这个数的p指数幂的倒数也可表示为:(m0,n0,p为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式与多项式的
11、乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加2、乘法公式:平方差公式:(ab)(ab)a2b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差完全平方公式:(ab)2a22abb2 (ab)2a22abb2文字语
12、言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍3、因式分解:因式分解的定义把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形; (3)因式分解必须分解到每个因式都不能分解为止弄清因式分解与整式乘法的内在的关系因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式二、熟练掌握因式分解的常用方法1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是
展开阅读全文