书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型2022新人教版七年级上册《数学》知识点总结.docx

  • 上传人(卖家):Q123
  • 文档编号:4637799
  • 上传时间:2022-12-28
  • 格式:DOCX
  • 页数:10
  • 大小:87.73KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2022新人教版七年级上册《数学》知识点总结.docx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 2022 新人 教版七 年级 上册 知识点 总结 下载 _七年级上册(旧)_人教版(2024)_数学_初中
    资源描述:

    1、人教版七年级数学上册知识点总结第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数; a0 a是正数; a0 a是负数;a0 a是正数或0 a是非负数; a 0 a是负数或0 a是非正数.例:把下列各数填在相应额大括号内: 1,0.1,789,25,0,20,3.14,590,正整数集 ; 非负整数集 ;自

    2、然数集 ; 非负数集 2数轴:数轴是规定了原点、正方向、单位长度的一条直线.例:数轴上与表示-2的点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。3相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 a+b=0 a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)

    3、 绝对值可表示为: 或 ; (3) ; ;(4) |a|是重要的非负数,即|a|0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。例:已知a、b、c表示的数如图所示,则a、b、c、-a、-b由小到大的顺序是 6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1 a、b互为倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平

    4、方等于本身的数:0,1立方等于本身的数:0,1,-1. 例:a、b互为相反数,c、d互为倒数, |m|2,则1mcd的值为多少? 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).例:把2.4(3.5)+(4.6)+ (+3.5)写成省略加号的和的形式是_10 有理数乘法法则

    5、:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)12有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数

    6、叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a2+|b|=0 a=0,b=0;(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.例:1、平方等于0.64的数是_;_ _的立方等于 642、x+ ( 2y+1 ) =0 , 则+的值是_15科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.例:近似数3.0精确到 位。17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。例:(1)1100(10.5) (2)18

    7、.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。例:如果,且,那么(). .、异号且正数的绝对值较小 D.、异号且负数的绝对值较小第二章 整式的加减1单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。例:下列代数式:2x4;3;mn;,a是单项式的有()A1个 B2个 C3个 D4个2单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.例:下列说法中,正确的是()Ax2的系数是 B.a2的系数为C3ab2的系数是3a D.xy2的系数是,次数是23多项式:几个单项式的和叫多

    8、项式.4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5 .例:1、 如果整式xn25x2是关于x的三次三项式,那么n等于()A3 B4 C5 D62、写一个关于x的二次三项式,一次项的系数是1,二次项的系数是,则这个二次三项式为_6同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项.常数项都是同类项。7合并同类项法则: 系数相加,字母与字母的指数不变.8去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要改变符号.9整式的加减:一找:

    9、(划线);二“+”(系数相加)三抄:(字母和指数不变)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).第三章 一元一次方程 1等式:用“=”号连接而成的式子叫等式. 2等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.4方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等

    10、式性质1.6一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).8一元一次方程解法的一般步骤: 化简方程-分数基本性质 去 分母-同乘(不漏乘)最简公分母 (等式性质2) 去 括号-注意符号变化 (去括号法则)移 项-变号(留下靠前) (等式性质1)合并同类项-合并后符号 (合并同类项法则)系数化为1-除前面 (等式性质2)10列一元一次方程解应用题: (1)读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是

    11、,共,合,为,完成,增加,减少,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11列方程解应用题的常用公式:(1)行程问题: 距离=速度时间 ;例:1、甲站开出,行驶速度为65km/h,慢车行驶15分钟后,一列快车从甲站开出,行驶速度为85km

    12、/h,慢车和快车沿同一方向行驶,经过多长时间快车追上慢车?2、小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点反向而跑,问几分钟后,小丽与小杰第一次相遇?(2)工程问题: 工作量=工效工时 ;工程问题常用等量关系: 先做的+后做的=完成量例:由一个人做要50小时完成,现在计划由一部分人先做5小时,再增加8人和他们一起做10小时,完成了这项工作,问:先安排多少人工作?(3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)2 顺水逆水问题常用等量关系: 顺水路程=逆水路程例:轮

    13、船在两个码头之间航行,已知顺水航行需要4小时,逆水航行需要5小时,而水流的速度是2千米/时,求轮船在静水中航行的速度和两码头间的距离? (4)商品利润问题: 售价=定价 , ;利润问题常用等量关系: 售价-进价=利润例:1、某商场将某品牌洗衣机按进价提高35%,然后打出“九折酬宾,外送50元的打的费”的广告,结果每台洗衣机的获利208元,则每台洗衣机的进价为多少?2、某商店以每个书包80元的价格卖出两个书包,其中一个盈利20%,另一个亏损20 元,问这两个书包总的是盈利还是亏损?(说明理由)(5)配套问题:相等关系: 例:某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子

    14、3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?(6)话费问题:相等关系: 校长带领学校的市级三好生去北京旅游.甲旅行社说:“如果校长买全票一张,其他学生享半价优惠。”乙旅行社说:“包括校长在内,全部6折优惠。”全票价为100元.请你设计出合适的优惠方案。(7)积分问题:相等关系: 1、在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分。某队在这次循环赛中所胜场数比所打的场数少两场,结果得18分,那么该队胜了几场?2、某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非

    15、家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?第四章 图形认识初步平面图形从不同方向看立体图形展开立体图形平面图形几何图形立体图形直线、射线、线段角两点之间,线段最短线段大小的比较角的度量角的比较与运算余角和补角角的平分线等角的补角相等等角的余角相等两点确定一条直线一、知识结构二、知识点:1、直线、射线、线段的关系:从端点、图形、延伸性、表示方法、长度等方面对比。例:已知平面上四点A、B、C、D,如图:(1)画直线AB

    16、;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F(5) 延长AC至M,使CM等于2AC。 2、直线的性质:经过两点有一条直线,并且只有一条直线。即: _确定一条直线。3、线段的性质:两点之间,_。4、两点间的距离:连接两点的_,叫做两点间的距离。5、线段的中点及等分点的意义(1)若点C把线段AB分为_的两条线段AC和BC,则点C叫做线段的中点。几何语言描述: 或 或 6、角的定义和表示(1)有_的两条射线组成图形叫做角。这是从静止的角度来定义的。由一条射线绕着_旋转而成的图形叫做角。这是从运动的角度来定义的。(2)角的表示:用三个大写字母表示;用一个大写字母表示

    17、;用阿拉伯数字或希腊字母表示。7、角的度量 1060;160.8、角的比较 比较角大小的方法:度量法和叠合法。9、角的平分线OABC从一个角的顶点出发,把这个角分成_的两个角的射线,叫做这个角的平分线。几何语言描述: 或 或 10、余角和补角(1)定义:如果两个角的和等于_,就说这两个角互为余角。如果两个角的和等于_,就说这两个角互为补角。注意:余角和补角是两个角之间的关系;只与数量有有关,而与位置无关。(2)余角和补角的性质:同角(等角)的余角相等。 同角(等角)的补角相等。6、方位角:三、例题导引1 如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,画出从

    18、不同方向看到的平面图形。11222(1)如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点,求线段MN的长; (2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由。(3)若C在线段AB的延长线上,且满足ACBC = b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由。3 如图,AOB是直角, AOC=50,ON是 AOC的平分线,OM是 BOC的平分线。(1)求 MON的大小;(2)当 AOC 时, MON等于多少度?(3)当锐角 AOC的大小发生改变时, MON的大小也会发生改变吗?为什么? OBMANC

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022新人教版七年级上册《数学》知识点总结.docx
    链接地址:https://www.163wenku.com/p-4637799.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库