2022新北师大版八年级上册《数学》知识点总结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022新北师大版八年级上册《数学》知识点总结.doc》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2022 北师大 年级 上册 知识点 总结 下载 _八年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、北师大版数学(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数,称为勾股数。4、常用勾股数:3、4、5 6、8、10 9、12、15 15、 20、25 7、24、25 5、12、13 8、15、17 9、40、41 5、解立体图形上两点之间的最短距离问题(1)将立体图形展成平面图形(2)根据“两点之间线段最短”确定最短路线(3)最后以上面的最短路线为边构造直角三角形,利用勾股定理解决圆柱表面蚂蚁吃面包: 勾股定理:圆柱高的平方+
2、地面周长一半的平方=最短距离的平方6、直角三角形斜边上的高=两直角边乘积/斜边7、折叠问题的常用方法:折叠前后的图形全等。然后一边是x另一边是关于x的代数式第二章 实数1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:(1)无限不循环小数; (2)开方开不尽的数,如等(3),或化简后含有的数,如+8等;(4)有特定结构的数,如0.1010010001(5)某些三角函数值,如sin60o等3、算数平方根 平方根 立方根 X=a X=a X=a(x一个值,取正) ( x两个值,一正一负) (x一个值,可正可负)记做X=
3、 x= x= 平方根性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。立方根性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。4、二次根号下有意义的条件:根号下是非负数,即05、开平方:求一个数a的平方根的运算叫开平方,求一个数a的立方根的运算叫做开立方。a叫做被开方数。6、实数的倒数、相反数和绝对值与有理数的意义是一致的 7、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右
4、边的数总比左边的数大。(2)求差比较:设a、b是实数, (2)求商比较法设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。8、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1) ()(2) ()9、最简二次根式:运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式10、非负数的情况:根号下,平方,绝对值。例如11、常用的平方与立方 11=121,12=144,13=169,14=196,15=225,16=256,17=289,18=32
5、4,19=361,20=400,21=441, 25=625 2的立方8 3的立方27 4的立方64 5的立方125 6的立方21612、常用的开二次根式(自己填好)= = = = = = = = = =第三章 位置与坐标1、 在平面内,确定物体的位置一般需要两个数据。2、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。3、象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y
6、轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。4、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。5、各象限内点的坐标的特征 点P(x,y)第一象限(+ +) 点P(x,y)第二象限(-
7、+)点P(x,y)第三象限(- -) 点P(x,y)第四象限(+ -)6、坐标轴上的点的特征点P(x,y)在x轴上(x轴上的点纵坐标为0)点P(x,y)在y轴上(y轴上的点横坐标为0)点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点7、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等(直线y=x)点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(直线y=-x)8、和坐标轴平行的直线上点的坐标的特征平行于x轴的直线上的各点的纵坐标相同。平行于y轴的直线上的各点的横坐标相同。9、关于x轴、y轴或原点对称的点的坐标的特征关
8、于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)总述,关于哪个轴对称哪个坐标不变,另一个坐标互为相反数点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)10、点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于11、坐标变化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来
展开阅读全文