书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型排列组合解题技巧综合复习优秀课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4635830
  • 上传时间:2022-12-27
  • 格式:PPT
  • 页数:15
  • 大小:471KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《排列组合解题技巧综合复习优秀课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    排列组合 解题 技巧 综合 复习 优秀 课件
    资源描述:

    1、排列组合解题技巧综合复习教学目的教学目的教学过程教学过程课堂练习课堂练习课堂小结课堂小结制作者:艾华勇 1.熟悉解决排列组合问题的基本方法;2.让学生掌握基本的排列组合应用题的解题技巧;3.学会应用数学思想分析解决排列组合问题.一 复习引入二 新课讲授 排列组合问题在实际应用中是非常广泛的排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的并且在实际中的解题方法也是比较复杂的,下下面就通过一些实例来总结实际应用中的解题技面就通过一些实例来总结实际应用中的解题技巧巧.例题1例题6例题5例题4例题3例题2从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元

    2、素中取出m个元素的一个排列.2.2.组合的定义组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.3.排列数公式排列数公式:4.4.组合数公式组合数公式:1.1.排列的定义排列的定义:)!(!)1()2)(1(mnnmnnnnAmn排列与组合的区别与联系排列与组合的区别与联系:与顺序有关的与顺序有关的为排列问题为排列问题,与顺序无关的为组合问题与顺序无关的为组合问题.)!(!)1()2)(1(mnmnmmnnnnAACmmmnmn例例1 1 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生之间,且老师互不相邻,

    3、共有多少种不同的坐法?解解 先排学生共有 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有 种选法.根据乘法原理,共有的不同坐法为 种.88A47A4788AA结论结论1 1 插空法插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.分析分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.例2 5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?解 因为女生要排在一起,所以可以将3个女

    4、生看成是一个人,与5个男生作全排列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不同的排法.结论2 捆绑法捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.66A33A3366AA例3 在高二年级中的8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?解 此题可以转化为:将12个相同的白球分成8份,有多少种不同

    5、的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有 种不同的放法,所以名额分配方案有 种.711C711C结论3 转化法(插拔法)转化法(插拔法):对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.分析 此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.例4 袋中有不同的5分硬币23个,不同的1角硬币10个,如果从袋中取出2元钱,有多少种取法?解 把所有的硬币全部取出来,将得到 0.0523+0.1010=2.15

    6、元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有 种取法.110123323CCC结论4 剩余法剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.分析 此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.例5 期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?解 不加任何限制条件,整个排法有 种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之

    7、前考的排法共有 种.99A9921A结论5 对等法对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一.在求解中只要求出全体,就可以得到所求.分析 对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了.并且也避免了问题的复杂性.例6 某班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?解 43人中任抽5人的方法有 种,正副班长,团支部书记都不在内的抽法有 种,所以正副班长,团支部书记至少有1人在内的抽法有 种.54

    8、3C540C540543CC结论6 排除法排除法:有些问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除.分析 此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.练习:练习:有12个人,按照下列要求分配,求不同的分法种数 (1)分为两组,一组7人,一组5人;(2)分为甲、乙两组,甲组7人,乙组5人;(3)分为甲、乙两组,一组7人,一组5人;(4)分为甲、乙两组,每组6人;(5)分为两组,每组6人;(6)分为三

    9、组,一组5人,一组4人,一组3人;(7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人;(8)分为甲、乙、丙三组,一组5人,一组4人,一组3人;(9)分为甲、乙、丙三组,每组4人;(10)分为三组,每组4人 互斥分类互斥分类-分类法分类法 先后有序先后有序-位置法位置法 反面明了反面明了-排除法排除法 相邻排列相邻排列-捆绑法捆绑法 分隔排列分隔排列-插空法插空法 小结小结:本节课我们学习了解决排列组合应用题的一些解题技巧,具体有插入法插入法,捆绑法捆绑法,转化法转化法,剩余法剩余法,对等法对等法,排异法排异法;对于不同的题目,根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较

    10、复杂的问题,我们可以将几种技巧结合起来应用,便于我们迅速准确地解题.在这些技巧中所涉及到的数学思想方法,例如:分类讨论思想,变换思想,特殊化思想等等,要在应用中注意掌握.28.即使爬到最高的山上,一次也只能脚踏实地地迈一步。21.无论有多困难,都坚强地抬头挺胸,告诉所有人,你并非他们想象的那样不堪一击。18.纵然有万般心碎,也要坚强的面对,因为没有谁会是你值得依靠的。29.健康的身体是实目标的基石。99.不读清华不肯休,我心一片磁针石。91.要感谢痛苦与挫折,它是我们的功课,我们要从中训练,然后突破,这样才能真正解脱。30.成功只有一个理由,失败却有一千种理由。62.虽然信念有时薄如蝉翼,但只

    11、要坚持,它会越来越厚的。11.努力一定有结果,但不一定有好结果。48.好习惯成就一生,坏习惯毁人前程。7.人生最可悲的是:良师不学;良友不交;良机不握。34.失败,其实不是说明你差,而是提醒你该努力了,若目下当今就觉得失望无力,未来那么远,你该怎么扛。35.今天有许多人不是不愿接受新观念,而是不愿抛弃旧观念。47.人生舞台的大幕随时都可能拉开,关键是你愿意表演,还是选取躲避。54.没有人能改变你,别人只能影响你,能改变你的只有你自己。61.日日行,不怕千万里;常常做,不怕千万事。66.世上无难事,只怕有心人。98.古之成大事者,不惟有超世之才,必有坚忍不拔之志。63.量身高要用尺子,称体重要用秤,衡量真理,要用时间和实践。110.学海无涯勤可渡,书山万仞志能攀。70.自己的路自己走,无论是苦是累,甚至是失败,都要去承担,只要是自己的选择,就无怨无悔。65.善于利用时间的人,永远找得到充裕的时间。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:排列组合解题技巧综合复习优秀课件.ppt
    链接地址:https://www.163wenku.com/p-4635830.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库