高一人教版必修一数学期中复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高一人教版必修一数学期中复习课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一人教版 必修 数学 期中 复习 课件 下载 _其他_数学_高中
- 资源描述:
-
1、1.1.集合与元素集合与元素(1 1)集合元素的三个特征:)集合元素的三个特征:_、_、_._.(2 2)元素与集合的关系是)元素与集合的关系是_或或_关系,关系,用符号用符号_或或_表示表示.1.1 1.1 集合的概念及其基本运算集合的概念及其基本运算 确定性确定性互异性互异性无序性无序性属于属于不属于不属于(3)(3)集合的表示法:集合的表示法:_、_、_、_._.(4)(4)常用数集:自然数集常用数集:自然数集N N;正整数集;正整数集N N*(或(或N N+);整整 数集数集Z Z;有理数集;有理数集Q Q;实数集;实数集R R.(5)(5)集合的分类集合的分类:按集合中元素个数划分按
2、集合中元素个数划分,集合可以集合可以 分为分为_、_、_._.2.2.集合间的基本关系集合间的基本关系 (1)(1)子集、真子集及其性质子集、真子集及其性质 对任意的对任意的x xA A,都有,都有x xB B,则,则 (或(或 ).若若A AB B,且在,且在B B中至少有一个元素中至少有一个元素x xB B,但,但x xA A,则则_(或(或_).列举法列举法描述法描述法图示法图示法有限集有限集无限集无限集空集空集BAAB 区间法区间法 _A A;A A_A A;A A B B,B B C C A A_C C.若若A A含有含有n n个元素个元素,则则A A的子集有的子集有_个个,A A的
3、非空子集的非空子集 有有_个个,A A的非空真子集有的非空真子集有_个个.(2)(2)集合相等集合相等 若若A AB B且且B BA A,则则_._.3.3.集合的运算及其性质集合的运算及其性质 (1)(1)集合的并、交、补运算集合的并、交、补运算 并集:并集:A AB B=x x|x xA A或或x xB B;交集:交集:A AB B=_=_;补集:补集:U UA A=_.=_.U U为全集,为全集,U UA A表示表示A A相对于全集相对于全集U U的补集的补集.2 2n n2 2n n-1-12 2n n-2-2A A=B B x x|x xA A且且x xB B|AxUxx 且(2)(
4、2)集合的运算性质集合的运算性质并集的性质并集的性质:A A=A A;A AA A=A A;A AB B=B BA A;A AB B=A AB BA A.交集的性质:交集的性质:A A=;A AA A=A A;A AB B=B BA A;A AB B=A AA AB B.补集的性质:补集的性质:1.1.(20092009广东理,广东理,1 1)已知全集已知全集U U=R R,集合集合M M=x x|-2|-2x x-12-12和和 N N=x x|x x=2=2k k-1,-1,k k=1,2,=1,2,的关系的韦恩的关系的韦恩(Venn)(Venn)图如图如 图所示,则阴影部分所示的集合的元
5、素共有(图所示,则阴影部分所示的集合的元素共有()A.3A.3个个 B.2B.2个个 C.1C.1个个 D.D.无穷多个无穷多个 解析解析 M M=x x|-1|-1x x3,3,M MN N=1,3=1,3,有,有2 2个个.B2.2.(20092009天津文,天津文,1313)设全集设全集U U=A AB B=x xN N*|lg lg x x1,1,若若A A(U UB B)=)=m m|m m=2=2n n+1,+1,n n=0,1,2,3,4=0,1,2,3,4,则集合则集合B B=_.=_.解析解析 A AB B=x xN N*|lg|lg x x1=1,2,3,4,5,6,7,8
6、,1=1,2,3,4,5,6,7,8,9,9,A A(U UB B)=)=m m|m m=2=2n n+1,+1,n n=0,1,2,3,4=0,1,2,3,4=1,3,5,7,9,=1,3,5,7,9,B B=2,4,6,8.=2,4,6,8.2,4,6,82,4,6,83.3.(20092009北京文,北京文,1414)设设A A是整数集的一个非空子是整数集的一个非空子 集,对于集,对于k kA A,如果如果k k-1-1 A A,且且k k+1+1 A A,那么称那么称k k是是 A A的一个的一个“孤立元孤立元”.给定给定S S=1,2,3,4,5,6,7,8,=1,2,3,4,5,6
7、,7,8,由由 S S的的3 3个元素构成的所有集合中,不含个元素构成的所有集合中,不含“孤立元孤立元”的的 集合共有集合共有_个个.解析解析 由题意知,不含由题意知,不含“孤立元孤立元”的集合有:的集合有:1,21,2,3,2,33,2,3,4,3,44,3,4,5,4,55,4,5,6,5,66,5,6,7,7,6,7 6,7,88,共有,共有6 6个集合个集合.6 6 4.已知集合已知集合A A=x x|0|0axax+15,+15,集合集合B B=(1 1)若)若A AB B,求实数,求实数a a的取值范围;的取值范围;(2 2)若)若B BA A,求实数,求实数a a的取值范围;的取
8、值范围;(3 3)A A、B B能否相等?若能,求出能否相等?若能,求出a a的值;若不能,的值;若不能,试说明理由试说明理由.在确定集合在确定集合A A时,需对时,需对x x的系数的系数a a进行讨进行讨 论论.利用数轴分析,使问题得到解决利用数轴分析,使问题得到解决.思维启迪思维启迪.221|xx2.1 2.1 函数及其表示函数及其表示 1.1.函数的基本概念函数的基本概念 (1 1)函数定义)函数定义 设设A A,B B是非空的是非空的 ,如果按照某种确定的对应,如果按照某种确定的对应 关系关系f f,使对于集合使对于集合A A中的中的 一个数一个数x x,在集合在集合B B中中数集数集
9、任意任意都有都有 的数的数f f(x x)和它对应,那么就称和它对应,那么就称f f:A AB B为为 从集合从集合A A到集合到集合B B的一个函数,记作的一个函数,记作y y=f f(x x),),x xA A.(2)(2)函数的定义域、值域函数的定义域、值域在函数在函数y y=f f(x x),),x xA A中,中,x x叫做自变量叫做自变量,x x的取值范围的取值范围A A 叫做函数的叫做函数的 ;与;与x x的值相对应的的值相对应的y y值叫做函数值叫做函数值,函数值的集合值,函数值的集合 f f(x x)|)|x xA A 叫做函数的叫做函数的 .显显然,值域是集合然,值域是集合
10、B B的子集的子集.(3)(3)函数的三要素:函数的三要素:、和和 .(4)(4)相等函数:如果两个函数的相等函数:如果两个函数的 和和 完完全一致,则这两个函数相等,这是判断两函数相等的全一致,则这两个函数相等,这是判断两函数相等的依据依据.唯一确定唯一确定定义域定义域值域值域定义域定义域值域值域对应关系对应关系定义域定义域对应关系对应关系2.2.函数的表示法函数的表示法表示函数的常用方法有:表示函数的常用方法有:、.3.3.映射的概念映射的概念设设A A、B B是两个非空集合,如果按照某种对应法则是两个非空集合,如果按照某种对应法则f f,使对于集合使对于集合A A中的任意一个元素中的任意
11、一个元素x x,在集合在集合B B中中 确定的元素确定的元素y y与之对应,那么就称对应与之对应,那么就称对应f f:A AB B为为 从集合从集合A A到集合到集合B B的一个映射的一个映射.4.4.由映射的定义可以看出,映射是由映射的定义可以看出,映射是 概念的推广,函概念的推广,函 数是一种特殊的映射,要注意构成函数的两个集合数是一种特殊的映射,要注意构成函数的两个集合A A,B B必须是必须是 .解析法解析法图象法图象法列表法列表法都有唯都有唯一一函数函数非空数集非空数集1.1.设集合设集合M M=x x|0|0 x x22,N N=y y|0|0y y22,那么下面,那么下面 的的4
12、 4个图形中,能表示集合个图形中,能表示集合M M到集合到集合N N的函数关系的的函数关系的 有有 ()()A.A.B.B.C.C.D.D.解析解析 由映射的定义,要求函数在定义域上都有图由映射的定义,要求函数在定义域上都有图象,并且一个象,并且一个x x对应着一个对应着一个y y,据此排除,据此排除,选,选C.C.C2.2.给出四个命题:给出四个命题:函数是其定义域到值域的映射;函数是其定义域到值域的映射;f f(x x)=是函数;是函数;函数函数y y=2=2x x(x xN N)的图象)的图象是一条直线;是一条直线;f f(x x)=与与g g(x x)=)=x x是同一个函数是同一个函
13、数.其中正确的有其中正确的有()A.1A.1个个 B.2B.2个个 C.3C.3个个 D.4D.4个个解析解析 由函数的定义知由函数的定义知正确正确.满足满足f f(x x)=的的x x不存在,不存在,不正确不正确.又又y y=2=2x x(x xN N)的图象是一条直线上的一群孤立的的图象是一条直线上的一群孤立的 点,点,不正确不正确.又又f f(x x)与)与g g(x x)的定义域不同,)的定义域不同,也不正确也不正确.xx23xx2Axx23 求函数的定义域求函数的定义域【例例1 1】(20092009江西理,江西理,2 2)函数函数的定义域为的定义域为()A.A.(-4-4,-1-1
14、)B.B.(-4-4,1 1)C.C.(-1-1,1 1)D.D.(-1-1,1 1 求函数求函数f f(x x)的定义域,只需使解析式有的定义域,只需使解析式有 意义,列不等式组求解意义,列不等式组求解.解析解析 43)1n(12xxxy思维启迪思维启迪 1.1解得0,430,1由2 xxxxC 3.3.(2008(2008湖北湖北)函数函数 的定义域为的定义域为()A.A.(-,-4-42 2,+)B.B.(-4-4,0 0)(0 0,1 1)C.C.-4-4,0 0)(0 0,1 1D.D.-4-4,0 0)(0 0,1 1)23112xxxxfn()()432 xx求函数解析式求函数解
15、析式 4.4.(1 1)已知)已知f f(+1)=l(+1)=lg g x x,求,求f f(x x););(2)(2)已知已知f f(x x)是一次函数,且满足是一次函数,且满足3 3f f(x x+1)-2+1)-2f f(x x-1)-1)=2 =2x x+17+17,求,求f f(x x););(3)(3)设设f f(x x)是是R R上的函数,且上的函数,且f f(0)=1,(0)=1,对任意对任意x x,y yR R 恒有恒有f f(x x-y y)=)=f f(x x)-)-y y(2(2x x-y y+1)+1),求,求f f(x x)的表达式的表达式.x2 分段函数分段函数
16、5.5.设函数设函数f f(x x)=)=若若f f(-4)=(-4)=f f(0),(0),f f(-2)=-2,(-2)=-2,则关于则关于x x的方程的方程f f(x x)=)=x x解的个数为解的个数为 ()A.1 B.2A.1 B.2C.3C.3D.4D.4 求方程求方程f f(x x)=)=x x的解的个数,先用待定系的解的个数,先用待定系 数法求数法求f f(x x)的解析式,再用数形结合或解方程)的解析式,再用数形结合或解方程.,0,2,0,2xxcbxx思维启迪思维启迪2.2 2.2 函数的单调性与最大函数的单调性与最大(小小)值值 1.1.函数的单调性函数的单调性 (1 1
17、)单调函数的定义)单调函数的定义 增函数增函数减函数减函数定定义义一般地,设函数一般地,设函数f f(x x)的定义域为)的定义域为I I.如果对于定如果对于定义域义域I I内某个区间内某个区间D D上的任意两个自变量上的任意两个自变量x x1 1,x x2 2 定定义义当当x x1 1 x x2 2时时,都有都有 ,那,那么就说函数么就说函数f f(x x)在区在区间间D D上是增函数上是增函数 当当x x1 1 x x2 2时,都有时,都有 ,那么就,那么就说函数说函数f f(x x)在区间)在区间D D上是减函数上是减函数 图图象象描描述述自左向右看图象是自左向右看图象是_ 自左向右看图
18、象是自左向右看图象是_ f f(x x1 1))f f(x x2 2)上升的上升的下降的下降的(2)(2)单调区间的定义单调区间的定义 若函数若函数f f(x x)在区间在区间D D上是上是_或或_,则称,则称 函数函数f f(x x)在这一区间上具有(严格的)单调性,)在这一区间上具有(严格的)单调性,_叫做叫做f f(x x)的单调区间)的单调区间.增函数增函数减函数减函数区间区间D D2.2.函数的最值函数的最值 前提前提 设函数设函数y y=f f(x x)的定义域为的定义域为I I,如果存在实数,如果存在实数M M满足满足 条件条件 对于任意对于任意x xI I,都有都有_;存在存在
19、x x0 0I I,使得使得_._.对于任意对于任意x xI I,都,都有有_;存在存在x x0 0I I,使得使得_._.结论结论 M M为最大值为最大值 M M为最小值为最小值 f f(x x)M Mf f(x x0 0)=M Mf f(x x)M Mf f(x x0 0)=M M1 1。试讨论函数试讨论函数 x x(-1,1)(-1,1)的单的单 调性(其中调性(其中a a00).解解 方法一方法一 根据单调性的定义求解根据单调性的定义求解.设设-1-1x x1 1 x x2 21,1,-1 -1x x1 1 x x2 21,|1,|x x1 1|1,|1,|x x2 2|1,|0,0,
20、即即-1-1x x1 1x x2 21,0.+10.,1)(2xaxxf.)1)(1()1)(11)()(2221211222221121xxxxxxaxaxxaxxfxf则,1|,01,01212221xxxx 复合函数的单调性复合函数的单调性2。已知函数已知函数f f(x x)=log)=log2 2(x x2 2-2-2x x-3)-3),则使,则使f f(x x)为减为减 函数的区间是函数的区间是 ()()A.(3,6)B.(-1,0)A.(3,6)B.(-1,0)C.(1,2)D.C.(1,2)D.(-3,-1-3,-1)先求得函数的定义域先求得函数的定义域,然后再结合二次然后再结合
21、二次 函数、对数函数的单调性进行考虑函数、对数函数的单调性进行考虑.解析解析 由由x x2 2-2-2x x-30,-30,得得x x-13,3,结合二次函数的结合二次函数的 对称轴直线对称轴直线x x=1=1知知,在对称轴左边函数在对称轴左边函数y y=x x2 2-2 2x x-3-3是是 减函数,所以在区间(减函数,所以在区间(-,-1-1)上是减函数)上是减函数,由由 此可得此可得D D项符合项符合.故选故选D.D.思维启迪思维启迪D 函数的单调性与最值函数的单调性与最值3 3。已知函数。已知函数 x x1,+).1,+).(1)(1)当当a a=时时,求求f f(x x)的最小值的最
22、小值;(2)(2)若对任意若对任意x x1,+),1,+),f f(x x)0)0恒成立,试求实恒成立,试求实 数数a a的取值范围的取值范围.第第(1)(1)问可先证明函数问可先证明函数f f(x x)在在1,+)1,+)上的单调性上的单调性,然后利用函数的单调性求解,对于第然后利用函数的单调性求解,对于第 (2)(2)问可采用转化为求函数问可采用转化为求函数f f(x x)在在1,+)1,+)上的最小上的最小 值大于值大于0 0的问题来解决的问题来解决.思维启迪思维启迪,)(xaxxxf 2221 函数单调性与不等式函数单调性与不等式4。(12(12分分)函数函数f f(x x)对任意的对
23、任意的a a、b bR R,都有都有f f(a a+b b)=f f(a a)+)+f f(b b)-1,)-1,并且当并且当x x00时,时,f f(x x)1.)1.(1 1)求证:)求证:f f(x x)是是R R上的增函数;上的增函数;(2 2)若)若f f(4)=5,(4)=5,解不等式解不等式f f(3(3m m2 2-m m-2)3.-2)00且且a a11)是)是R R上上 的减函数,则的减函数,则a a的取值范围是的取值范围是 ()()A.A.(0 0,1 1)B.B.C.D.C.D.解析解析 据单调性定义,据单调性定义,f f(x x)为减函数应满足:)为减函数应满足:0,
24、0,3)(xaxaxxfx)1,3131,0(32,0(.,1313100 aaaa即即B1.1.根式根式(1 1)根式的概念)根式的概念 如果一个数的如果一个数的n n次方等于次方等于a a(n n1 1且且n nN N*),那么这),那么这 个数叫做个数叫做a a的的n n次方根次方根.也就是,若也就是,若x xn n=a a,则,则x x叫做叫做 _,_,其中其中n n1 1且且n nN N*.式子式子 叫做叫做_,_,这里这里n n叫做叫做_,a a叫做叫做_._.2.4 2.4 指数与指数函数指数与指数函数 a a的的n n次方根次方根na根式根式根指数根指数被开方数被开方数(2 2
25、)根式的性质)根式的性质 当当n n为奇数时为奇数时,正数的正数的n n次方根是一个正数,负数的次方根是一个正数,负数的 n n次方根是一个负数,这时,次方根是一个负数,这时,a a的的n n次方根用符号次方根用符号_ 表示表示.当当n n为偶数时,正数的为偶数时,正数的n n次方根有两个,它们互为次方根有两个,它们互为 相反数相反数,这时,正数的正的这时,正数的正的n n次方根用符号次方根用符号_表示表示,负的负的n n次方根用符号次方根用符号_表示表示.正负两个正负两个n n次方根次方根 可以合写为可以合写为_(a a0 0).=_.=_.nananananna)(a a当当n n为奇数时
展开阅读全文