等差数列复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等差数列复习课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 复习 课件
- 资源描述:
-
1、等差数列的通项公式dnaan)1(11()dna d当当d0时,这是关于时,这是关于n的一个一次函数。的一个一次函数。d=0,常数列;常数列;d0,递增数列;递增数列;d0,递增数列;递增数列;d0,递减数递减数列列小结:小结:1nnaad nN()或或 如果一个数列的通项公式能写成 (p,q 是常数)的形式,那么这个数列是不是等差 数列呢?napnq课后思考:课后思考:如果一个数列是等差数列,那么该数列的通项公式一定能写成(p,q是常数)的形式。napnq推广后的通项公式推广后的通项公式(n-m)d daamnmnaamn 例例4 在在等差数列等差数列an中中 (1)若若a59=70,a80
2、=112,求求a101;(2)若若ap=q,aq=p(pq),求求ap+q;(3)若若a12=23,a42=143,an=263,求求n.d=2,a101=154d=-1,ap+q=0d=4,n=72等等差差中中项项 三个数成等差数列,可设这三个数为:三个数成等差数列,可设这三个数为:a、b b、c c成等差数列成等差数列,则则 _2ba _b与与a的等差中项是的等差中项是即即a、b的算术平均数的算术平均数.2b=a+ca,a+d,a+2d 或或 a-d,a,a+d例例5(1)已知已知a,b,c成等差数列,求证:成等差数列,求证:ab-c2,ca-b2,bc-a2也成等差数列;也成等差数列;(
3、2)三数成等差数列,它们的和为三数成等差数列,它们的和为12,首尾二数的积为首尾二数的积为12,求此三数,求此三数.上面的命题中的等式两边有上面的命题中的等式两边有 相相 同同 数数 目目 的项,如的项,如a1+a2=a3 成立吗?成立吗?【说明说明】3.更一般的情形,更一般的情形,an=d=等差数列的性质等差数列的性质1.an为等差数列为等差数列 2.a、b、c成等差数列成等差数列 an+1-an=dan+1=an+dan=a1+(n-1)dan=kn +b(k、b为常数)为常数)am+(n-m)dmnaamnb为为a、c 的等差中项的等差中项AA2cab 2b=a+c4.在在等差数列等差数
4、列an中,由中,由 m+n=p+q am+an=ap+aq注意:注意:上面的命题的逆命题上面的命题的逆命题 是不一定成立是不一定成立 的;的;例例2.在在等差数列等差数列an中中(1)已知已知 a6+a9+a12+a15=20,求,求a1+a20例题分析例题分析(2)已知)已知 a3+a11=10,求,求 a6+a7+a8(3)已知已知 a4+a5+a6+a7=56,a4a7=187,求,求a14及公差及公差d.分析:由分析:由 a1+a20=a6+a15=a9+a12 及及 a6+a9+a12+a15=20,可得可得a1+a20=10分析:分析:a3+a11=a6+a8=2a7,又已知又已知
5、 a3+a11=10,a6+a7+a8=(a3+a11)=1523分析:分析:a4+a5+a6+a7=56 a4+a7=28 又又 a4a7=187 ,解解、得得a4=17a7=11 a4=11a7=17 或或d=_2或或2,从而从而a14=_3或或31课堂练习课堂练习1 1.等差数列等差数列 an 的前三项依次为的前三项依次为 a-6-6,2 2a-5-5,-3-3a+2 2,则,则 a 等于(等于()A.-.-1 1 B.1 1 C.-2 -2 D.2B2.在在数列数列an中中a1=1,an=an+1+4,则,则a10=2(2a-5)=(-3a+2)+(a-6-6)提示提示1:提示:提示:
6、d=an+1an=4-353.在在等差数列等差数列an中中 (1)若若a59=70,a80=112,求,求a101;(2)若若ap=q,aq=p(pq),求,求ap+qd=2,a101=154d=-1,ap+q=0研究性问题研究性问题300 5004.在在等差数列等差数列an中中,a1=83,a4=98,则这个数列有,则这个数列有 多少项在多少项在300到到500之间?之间?d=5,提示:提示:an=78+5n52845244 nn=45,46,84402.已知已知an为等差数列,若为等差数列,若a10=20 ,d=-1,求,求a 3?1.若若a12=23,a42=143,an=263,求,求
7、n.3.三数成等差数列,它们的和为三数成等差数列,它们的和为12,首尾二数的,首尾二数的积为积为12,求此三数,求此三数.d=4n=72a 3=a 10+(3-10)d a 3=27设这三个数分别为设这三个数分别为a-d a,a+d,则,则3a=12,a2-d2=126,4,2或或2,4,6 如果数列 的第n项 与n之间的关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。nana叫做数列 的前n项和。nannnaaaaaS1321)2()1(11nSSnSannn等差数列的前n项和公式的推导,1a,2a,3a,na,nnnaaaaaS1321由等差数列由等差数列的前的前n项和项和得)
8、1()2()(1111dnadadaaSn)1()2()(dnadadaaSnnnnn个(nnnnnaaaaaaS)2111)1naan(2)1nnaanS(等差数列的前n项和公式的其它形式2)1nnaanS(dnaan)1(1dnnnaSn2)11(dnaan)1(1dnnnaSnn2)1(a1ann公式记忆方法公式记忆方法!1)前前n个正整数的和:个正整数的和:1+2+3+n=;2)求正整数列中求正整数列中前前n个偶数个偶数的和的和 2+4+6+2n=。).1(2)22(nnnnSn解:.2)1(nn1()12nnn aaS公式例例2:数列:数列an是等差数列,是等差数列,a1=50,d=
9、2(1)从第)从第n项开始有项开始有an0,d0,则,则sn存在最大值;存在最大值;若在等差数列若在等差数列an中,中,a10,则,则sn存在最小值;存在最小值;例例3.在等差数列在等差数列an中中最大最大。值时值时为何为何nSnSSa,025141 解:方法一解:方法一01425 SS0.2524171615 aaaaa00110.)()(20202024162515 aaaaaaa0,00,020191 aada2019或或最大时,最大时,nSn解:方法二(只适合填空题)解:方法二(只适合填空题)BnAnSn 21425SS 142519.55.1922514 n2019或或 n 1.1.
展开阅读全文