人教初中数学八上《轴对称复习》课件-(高效课堂)获奖-人教数学2022-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教初中数学八上《轴对称复习》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称复习 初中 数学 轴对称 复习 课件 高效 课堂 获奖 2022 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、第十三章第十三章 轴对称轴对称 把一个图形沿着一条直线折叠,把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它个图形就叫做轴对称图形。这条直线就是它的的对称轴对称轴。这时我们也说这个图形关于这条这时我们也说这个图形关于这条直线(成轴直线(成轴)对称)对称。把一个图形沿着某一条直线折叠,如把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做两个图关于这条直线对称。这条直线叫做对对称轴称轴。折叠后重合的点是对应点折叠
2、后重合的点是对应点,叫做叫做对称点对称点.知识回顾知识回顾 1、轴对称图形:、轴对称图形:2、轴对称:、轴对称:一、轴对称图形一、轴对称图形3 3、轴对称图形和轴对称的区别与联系轴对称图形和轴对称的区别与联系 轴对称图形轴对称图形轴对称轴对称 区别区别联系联系图形图形 (1)(1)轴对称图形是指轴对称图形是指()()具有特殊形状的图形具有特殊形状的图形,只对只对()()图形而言图形而言;(2)(2)对称轴对称轴()()只有一条只有一条(1)(1)轴对称是指轴对称是指()()图形图形 的位置关系的位置关系,必须涉及必须涉及 ()()图形图形;(2)(2)只有只有()()对称轴对称轴.如果把轴对称
3、图形沿对称轴如果把轴对称图形沿对称轴 分成两部分分成两部分,那么这两个图形那么这两个图形 就关于这条直线成轴对称就关于这条直线成轴对称.如果把两个成轴对称的图形如果把两个成轴对称的图形 拼在一起看成一个整体拼在一起看成一个整体,那那么它就是一个轴对称图形么它就是一个轴对称图形.B C A C B A A B C一个一个一个一个不一定不一定两个两个两个两个一条一条知识回顾:4、轴对称的性质:关于某直线对称的两个图形是全等形。关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对称如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴是任何一对对应点所连线
4、段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。平分,那么这两个图形关于这条直线对称。1、小明照镜子的时候,发现、小明照镜子的时候,发现T恤上的英恤上的英文单词在镜子中呈现文单词在镜子中呈现“”的样子,的样子,请你判断这个英文单词是(请你判断这个英文单词是()A.B.C.D.A练习:2 2、ABCABC与与DEFDEF关于直线关于直线L L成轴成轴对称,则对称,则C C是多少度?是多少度?65 40
5、 FEDCBAL6507501 1、什么叫线段的垂直平分线?、什么叫线段的垂直平分线?经过线段中点并且垂直于这条线段的直线,经过线段中点并且垂直于这条线段的直线,叫做这条线段的叫做这条线段的垂直平分线垂直平分线,也叫也叫中垂线。中垂线。2 2、线段垂直平分线有什么性质?、线段垂直平分线有什么性质?线段垂直平分线上的点线段垂直平分线上的点与这条线段的与这条线段的两个端点的距离相等两个端点的距离相等 。你能画图说明吗?二二.线段的垂直平分线线段的垂直平分线3.逆定理:与一条线段两个端点距离相等的点,都在线段的垂直平分线上。(完备性)4.线段垂直平分线的集合定义:线段的垂直平分线可以看作是线段的垂直
6、平分线可以看作是与线段两个端点距离相等与线段两个端点距离相等的所的所有点的集合。有点的集合。mABCFDE三、用坐标表示轴对称小结:三、用坐标表示轴对称小结:在平面直角坐标系中,关于在平面直角坐标系中,关于x轴对称的点轴对称的点横坐标相等横坐标相等,纵坐标互为相反数纵坐标互为相反数.关于关于y轴轴对称的点横坐标互为相反数对称的点横坐标互为相反数,纵坐标相等纵坐标相等.点(点(x,y)关于关于x轴对称的点的坐标为轴对称的点的坐标为_.点(点(x,y)关于关于y轴对称的点轴对称的点的坐标为的坐标为_.(x,y)(x,y)1、完成下表、完成下表.已知点(2,-3)(-1,2)(-6,-5)(0,-1
7、.6)(4,0)关于x轴的对称点关于y轴的对称点(-2,-3)(2,3)(-1,-2)(1,2)(6,-5)(-6,5)(0,-1.6)(0,1.6)(-4,0)(4,0)2、已知点、已知点P(2a+b,-3a)与点与点P(8,b+2).若点若点p与点与点p关于关于x轴对称,则轴对称,则a=_ b=_.若点若点p与点与点p关于关于y轴对称,则轴对称,则a=_ b=_.练 习246-20(抢答抢答)例:已知ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出ABC关于y轴对称的图形。解:点解:点A(-3,5),B(-4,1),C(-1,3),关于,关于y轴对称轴对称点
8、的坐标分别为点的坐标分别为A(3,5),B(4,1),C(1,3).依次连接依次连接AB,BC,CA,就得到就得到ABC关于关于y轴对称的轴对称的ABC.A31425-2-4-1-3O1 2 3 4 5-4-3-2-1cBBAC 归纳归纳:先求出已知图形中的先求出已知图形中的 特殊特殊点点(如多边形的顶点或端点如多边形的顶点或端点)的对应的对应点的坐标点的坐标,描出并连接这些点描出并连接这些点,就可就可 得到这个图形的得到这个图形的轴对称图形轴对称图形.y 思考思考:如图:如图,分别作出点分别作出点P,M,N关于直线关于直线x=1的对称点的对称点,你能发现它们坐标之间分别你能发现它们坐标之间分
9、别有什么关系吗有什么关系吗?31425-2-1 012345-4-3-2-1x=1P(-2,4)M(-1,1)N(5,-2)N(-3,-2)M(3,1)P(4,4)x y 点(点(x,y)关于直线)关于直线x=1对称的点的坐标为(对称的点的坐标为(2-x,y)如图,分别作出如图,分别作出ABC关于直线关于直线x=1(记为(记为m)和直线和直线y=-1(记为(记为n)对称的图形,它们的对应点的坐标)对称的图形,它们的对应点的坐标之间分别有什么关系?之间分别有什么关系?如图:点(x,y)关于直线x=1对称的点的坐标为(2-x,y)关于直线y=-1对称的点的坐标为(x,-2-y)点(点(x,y)关于
10、直线)关于直线x=m对称的点的坐标为(对称的点的坐标为(2m-x,y),关于直线关于直线y=n对称的点的坐标为(对称的点的坐标为(x,2n-y)xM(-4,-3)N(-4,-7)nYmXOA(-4,5)B(-1,3)C(-4,1)D(6,5)E(6,1)F(3,3)G(-1,-5)类似:若两点(x1,y1)、(x2,y2)关于直线y=n对称,则 ,归纳:若两点(x1,y1)、(x2,y2)关于直线x=m对称,则;221xx 221yy y1=y2x1=x2X2=2m-x1y2=2n-y1(m=)(n=)1.如图,ABC中,边AB、BC的垂直平分线交于点P。(1)求证:PA=PB=PC。(2)点
11、P是否也在边AC的垂直平分线上呢?由此你能得出什么结论?APCB结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。4.利用轴对称变换作图:如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?ABLP1.有A、B、C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置。ABC利用轴对称变换作图:利用轴对称变换作图:2.2.如图:在如图:在ABCABC中,中,DEDE是是ACAC的垂直的垂直平分线,平分线,AC=5AC=5厘米,厘米,ABDABD的周长等的周长等于于1313厘米,则厘米,则AB
12、CABC的周长的周长是是 。18厘米厘米CABDE三、(等腰三角形三、(等腰三角形)知识点回顾知识点回顾1.1.等腰三角形的等腰三角形的性质性质等腰三角形的两个底角相等。(等腰三角形的两个底角相等。(等边对等角等边对等角)等腰三角形的顶角平分线、底边上的中线、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(底边上的高互相重合。(三线合一三线合一)2.2.等腰三角形的判定:等腰三角形的判定:如果一个三角形有两个角相等,那么这如果一个三角形有两个角相等,那么这两个角所对的边也相等。(两个角所对的边也相等。(等角对等边等角对等边)四、(等边三角形四、(等边三角形)知识点回顾知识点回顾1.
展开阅读全文