二次函数复习-2课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二次函数复习-2课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 复习 课件
- 资源描述:
-
1、二二 次次 函函 数数 复复 习习一、概念一、概念形如形如y=ax2+bx+c(a,b,c是常数,是常数,a0)的的函数叫做二次函数函数叫做二次函数其中二次项为其中二次项为ax2,一次项为,一次项为bx,常数项常数项c二次项的系数为二次项的系数为a,一次项的系数为,一次项的系数为b,常数项常数项c想一想想一想:函数的自变量函数的自变量x是否可以取任何值是否可以取任何值呢呢?注意注意:当二次函数表示某个实际问题时当二次函数表示某个实际问题时,还必还必须根据题意确定自变量的取值范围须根据题意确定自变量的取值范围.形如形如y=ax2+bx+c(a,b,c是常数,是常数,a0)的的函数叫做二次函数函数
2、叫做二次函数知识运用知识运用 下列函数中,哪些是二次函数?下列函数中,哪些是二次函数?(1)y=3x-1 (2)y=3x2 (3)y=3x3+2x2 (4)y=2x2-2x+1 (5)y=x-2+x (6)y=x2-x(1+x)函数函数yax2bxc 其中其中a、b、c是常数是常数 切记:切记:a0 右边一个右边一个x的二次多项式(不能是分式或根式)的二次多项式(不能是分式或根式)二次函数的特殊形式:二次函数的特殊形式:当当b0时,时,yax2c 当当c0时,时,yax2bx 当当b0,c0时,时,yax2驶向胜利的彼岸当m取何值时,函数是取何值时,函数是y=(m+2)x 分别分别 是一次函数
3、?是一次函数?反比例函数?反比例函数?知识运用知识运用m2-2二次函数?二次函数?(一)形如y=ax 2(a0)的二次函数 二次函数二次函数 开开 口口 方方 向向 对对 称称 轴轴 顶顶 点点 坐坐 标标 y=ax 2 a 0a 0 向上向上向下向下直线X=0(0,0)(二)(二)形如y=ax 2+k(a0)的二次函数二次函数二次函数开口方向开口方向对称轴对称轴顶点坐标顶点坐标y=ax 2+k a 0 向上向上a 0向下向下直线X=0(0,K)二次函数二次函数开口方向开口方向对称轴对称轴顶点坐标顶点坐标y=a(x-h)2 a 0 a 0 向上向上向下向下直线直线X=h(h,0)(三)、形如(
4、三)、形如y=a(x-h)2 (a0)的二次函数的二次函数o我思考,我进步我思考,我进步想一想想一想32o.A业精于勤荒于嬉业精于勤荒于嬉小试牛刀小试牛刀 0b2-4ac 0我思考,我进步我思考,我进步想一想想一想1.1.已知已知y=ax2+bx+c的图象如图所示的图象如图所示,a_0,b_a_0,b_ _0,c_0,abc_0_0,c_0,abc_0 b b 2a,2a-b_0,2a+b_0 2a,2a-b_0,2a+b_0 b b2 2-4ac_-4ac_0_0 a+b+c_0,a+b+c_0,a-b+c_0 a-b+c_0 4a-2b+c_0 4a-2b+c_0业精于勤荒于嬉业精于勤荒于
5、嬉小试牛刀小试牛刀 =0-11-2五、函数的增减性五、函数的增减性kmxaycbxaxy22)(顶点式一般式当当a0,1、在对称轴的左侧、在对称轴的左侧(x-m或或 ),y随随x的增大而减的增大而减小小2、在对称轴的右侧、在对称轴的右侧(x-m或或 ),y随随x的增大而减的增大而减大大ab2ab22、已知抛物线顶点坐标(、已知抛物线顶点坐标(m,k),通常设),通常设抛物线解析式为抛物线解析式为_3、已知抛物线与、已知抛物线与x 轴的两个交点轴的两个交点(x1,0)、(x2,0),通常设解析式为通常设解析式为_1、已知抛物线上的三点,通常设解析式为、已知抛物线上的三点,通常设解析式为_y=ax
6、2+bx+c(a0)y=a(x-m)2+k(a0)y=a(x-x1)(x-x2)(a0)六、求抛物线解析式常用的三种方法六、求抛物线解析式常用的三种方法一般式一般式顶点式顶点式交点式或两根式交点式或两根式练习根据下列条件,求二次函数的解析式。练习根据下列条件,求二次函数的解析式。(1)、图象经过、图象经过(0,0),(1,-2),(2,3)三点;三点;(2)、图象的顶点、图象的顶点(2,3),且经过点且经过点(3,1);(3)、图象经过、图象经过(0,0),(12,0),且最高点,且最高点 的纵坐标是的纵坐标是3。七、判别七、判别a、b、c、b2-4ac,2a+b,a+b+c的符号的符号(1)
7、a的符号:的符号:由抛物线的开口方向确定由抛物线的开口方向确定开口向上开口向上a0开口向下开口向下a0交点在交点在x轴下方轴下方c0与与x轴有一个交点轴有一个交点b2-4ac=0与与x轴无交点轴无交点b2-4ac0练一练:已知练一练:已知y=axy=ax2 2+bx+c+bx+c的图象如图所示的图象如图所示,a_0,b_0,c_0,abc_0a_0,b_0,c_0,abc_0 b_2a,2a-b_0,2a+b_0 b_2a,2a-b_0,2a+b_0 b b2 2-4ac_0-4ac_0 a+b+c_0,a-b+c_0 a+b+c_0,a-b+c_0 4a-2b+c_0 4a-2b+c_00-
8、11-2填空:填空:(1)(1)抛物线抛物线y yx x2 23x3x2 2与与y y轴的交点坐标是轴的交点坐标是_,与,与x x轴的交点坐标是轴的交点坐标是_;(2)(2)抛物线抛物线y y2x2x2 25x5x3 3与与y y轴的交点坐标是轴的交点坐标是_,与,与x x轴的交点坐标是轴的交点坐标是_(0,2)(0,2)(1,0)(1,0)和和(2,0)(2,0)(0,-3)(0,-3)(1,0)(1,0)和(和(1.51.5,0 0)八、如何求二次函数图象与坐标轴的交点八、如何求二次函数图象与坐标轴的交点(3 3)坐标轴三个交点围成的三角形面积是)坐标轴三个交点围成的三角形面积是 ;3.7
9、53.75利用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程的近似解 1、根据下列表格的对应值:、根据下列表格的对应值:判断方程判断方程ax2+bx+c=0(a0,a、b、c为常数)一个为常数)一个解的范围是()解的范围是()、3x3.23 、3.23x3.24 、3.24x3.25 、3.25x3.26x x3.23 3.23 3.243.243.253.253.263.26y=ay=ax2+bx+c+bx+c-0.06-0.06-0.02-0.020.030.030.090.09例例1.已知一抛物线的顶点坐标为已知一抛物线的顶点坐标为(-1,2),且过点且过点(1,-
展开阅读全文