书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型中考数学总复习专题二分类讨论思想课课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4628071
  • 上传时间:2022-12-26
  • 格式:PPT
  • 页数:26
  • 大小:2.64MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学总复习专题二分类讨论思想课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 复习 专题 分类 讨论 思想 课件 下载 _二轮专题_中考复习_数学_初中
    资源描述:

    1、专题二分类讨论思想 分类讨论的数学思想也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法 淄博市近几年的中考题中,2017年的第5,24题,2016年的第17,23题都体现了分类讨论的思想,它是数学中非常重要的数学方法之一,应该予以重视 运用分类讨论思想解题的关键是如何正确地进行分类,即确定分类的标准分类讨论的原则:(1)完全性原则,就是说分类后各子类别涵

    2、盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一分类的方法:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论常见的情形:由字母系数引起的讨论;由绝对值引起的讨论;由点、线的运动变化引起的讨论;由图形引起的讨论;由边、点的不确定引起的讨论;存在特殊情形而引起的讨论;应用问题中的分类讨论等典例(2017枣庄)如图,抛物线y x2bxc与

    3、x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.12(1)求抛物线的表达式及点D的坐标;(2)点F是抛物线上的动点,当FBABDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线表达式,再求其顶点D即可;(2)过F作FGx轴于点G,可设出F点坐标,利用FBGBDE,由相似三角形的性质可得到关于F点坐标的方程,分类讨论可求得F点的坐标

    4、;(3)由于M,N两点关于对称轴对称,可知点P为对称轴与x轴的交点,点Q在对称轴上,可设出Q点的坐标,则可表示出M的坐标,代入抛物线表达式可求得Q点的坐标【自主解答】【归纳总结】此类题目主要考查了学生分类讨论时要全面,分类的标准要一致,做到“不重不漏”1(2017淄博)若分式 的值为零,则x的值是()A1B1C1D2x 1x 1A2(2017淄博)如图1,经过原点O的抛物线yax2bx(a0)与x轴交于另一点A(,0),在第一象限内与直线yx交于点B(2,t)32(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBOABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由解:(1)B(2,t)在直线yx上,t2,B(2,2)把A,B两点坐标代入抛物线表达式可得

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学总复习专题二分类讨论思想课课件.ppt
    链接地址:https://www.163wenku.com/p-4628071.html
    晟晟文业
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库