浙教版八年级数学下册课件2.3 一元二次方程的应用(1).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《浙教版八年级数学下册课件2.3 一元二次方程的应用(1).ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙教版八年级数学下册课件2.3 一元二次方程的应用1 浙教版八 年级 数学 下册 课件 2.3 一元 二次方程 应用 下载 _八年级下册_浙教版_数学_初中
- 资源描述:
-
1、2.3 2.3 一元二次方程的应用(一元二次方程的应用(1 1) 问题情境:问题情境: 要做一个高是要做一个高是8cm,底面长比宽多底面长比宽多5cm,体积体积 528cm3的长方体木箱,问底面的长和宽是多的长方体木箱,问底面的长和宽是多 少?少? 8cm 长长 宽宽 528cm3 设宽为设宽为x x,由题意得:,由题意得: 8x8x(x+5x+5)=528=528 长方体的底面积长方体的底面积高高= =长方体体积长方体体积(528cm(528cm3 3) ) 找相等关系:找相等关系: 解:设长方体的宽为解:设长方体的宽为x(cm),则长为则长为 cm 列方程:列方程: 化简、整理后,得化简、
2、整理后,得 解得解得 x1=-11,x2=6 检验:检验:x1=-110不符合实际情况不符合实际情况,舍去舍去. 当当x2=6时时,符合题意符合题意 x=6 长方体的长为长方体的长为6+5=116+5=11 答答: :长方体的宽为长方体的宽为6cm,6cm,长为长为11cm.11cm. (x+5)(x+5) x(x+5) 8=528 x2+5x-66=0 回顾与总结:回顾与总结: 列方程解应用题的基本步骤怎样?列方程解应用题的基本步骤怎样? (1)审题:找出题中的量,分清有哪些已知量、未知)审题:找出题中的量,分清有哪些已知量、未知 量,哪些是要求的未知量和所涉及的基本数量关系、相量,哪些是要
3、求的未知量和所涉及的基本数量关系、相 等关系;等关系; (2)设:设元,包括设直接未知数或间接未知数;用)设:设元,包括设直接未知数或间接未知数;用 所设的未知数字母的代数式表示其他的相关量;所设的未知数字母的代数式表示其他的相关量; (3)列:列方程)列:列方程(一元二次方程一元二次方程); (4)解:解方程;)解:解方程; (5)检验并作答:注意根的准确性及是否符合实际意义。)检验并作答:注意根的准确性及是否符合实际意义。 例例1 1、某花圃用花盆培育某种花苗、某花圃用花盆培育某种花苗, ,经过实验发现每盆经过实验发现每盆 的盈利与每盆的株数构成一定的关系的盈利与每盆的株数构成一定的关系.
4、 .每盆植入每盆植入3 3株时株时, , 平均单株盈利平均单株盈利3 3元元; ;以同样的栽培条件以同样的栽培条件, , 若每盆每增加若每盆每增加1 1株株, ,平均单株盈利就减少平均单株盈利就减少0.50.5元元. .要要 使每盆的盈利达到使每盆的盈利达到1010元元, ,每盆应该植多少株每盆应该植多少株? ? 分析分析: 本题涉及的主要数量有每盆的花苗株数本题涉及的主要数量有每盆的花苗株数,平均单平均单 株盈利株盈利,每盆花苗的盈利每盆花苗的盈利. 主要数量关系有主要数量关系有: 平均单株盈利平均单株盈利株数株数=每盆盈利每盆盈利; 平均单株盈利平均单株盈利=3-0.5每盆增加的株数每盆增
5、加的株数. 例例1 1、某花圃用花盆培育某种花苗、某花圃用花盆培育某种花苗, ,经过试验发现每盆的盈利与经过试验发现每盆的盈利与 每盆的株数构成一定的关系每盆的株数构成一定的关系. .每盆植入每盆植入3 3株时株时, ,平均单株盈利平均单株盈利3 3元元; ; 以同样的栽培条件以同样的栽培条件, ,若每盆增加若每盆增加1 1株株, ,平均单株盈利就减少平均单株盈利就减少0.50.5元元. . 要使每盆的盈利达到要使每盆的盈利达到1010元元, ,每盆应该植多少株每盆应该植多少株? ? 如果直接设每盆植如果直接设每盆植x株株,怎样表示问题中相关的量怎样表示问题中相关的量? 解解:设每盆花苗增加的
6、株数为设每盆花苗增加的株数为x株株,则每盆花苗有则每盆花苗有_ 株株,平均单株盈利为平均单株盈利为_元元. 由题意 由题意,得得 (x+3)(3(x+3)(3- -0.5x)=100.5x)=10 解这个方程解这个方程,得得:x1=1, x2=2 (x+3)(x+3) (3(3- -0.5x)0.5x) 如果设每盆花苗增加的株数为如果设每盆花苗增加的株数为x株呢?株呢? 思考思考:这个问题设什么为这个问题设什么为x?有几种设法有几种设法? 化简,整理,得化简,整理,得 x2-3x+2=0 经检验,经检验,x x1 1=1,x=1,x2 2=2=2都是方程的解,且符合题意都是方程的解,且符合题意
7、. . 答答:要使每盆的盈利达到要使每盆的盈利达到10元元,每盆应植入每盆应植入4株或株或5株株. 某超市销售一种饮料,平均每天可售出某超市销售一种饮料,平均每天可售出100100箱,每箱利箱,每箱利 润润1212元。为了扩大销售,增加利润,超市准备适当降价。元。为了扩大销售,增加利润,超市准备适当降价。 据测算,若每箱降价据测算,若每箱降价1 1元,每天可多售出元,每天可多售出2020箱。如果要使箱。如果要使 每天销售饮料获利每天销售饮料获利14001400元,问每箱应降价多少元?元,问每箱应降价多少元? 解:设每箱应降价解:设每箱应降价x x元,得:元,得: (1212- -x x)()(
展开阅读全文