特殊平行四边形(一)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《特殊平行四边形(一)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特殊 平行四边形 课件
- 资源描述:
-
1、特殊平行四边形(一)初二数学 矩形:矩形:一课内知识的回顾:一课内知识的回顾:1矩形的特征:矩形的特征:边:对边平行且相等;AB/DC,ABDC,AD/BC,ADBC角:四个角相等,都等于90;ABCD90对角线:对角线互相平分且相等;AOCO,BODO,ACBD 对称性:既是轴对称又是中心对称图形ODCBAABCD2矩形的识别方法:矩形的识别方法:有三个角是直角的四边形是矩形;对角线相等且互相平分的四边形是矩形;有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形3个条件1个条件2个条件3与矩形相关的三角形:与矩形相关的三角形:注意:当边AB等于对角线AC一半时,矩形中出现的三角形
2、都是特殊的三角形(含30角的直角三角形、等边三角形、含120角的等腰三角形)ABCDOABCOBCOBA利用矩形对角线的特征,可以得到下面结论:直角三角形斜边上的中线等于斜边的一半 如图:ABC中,ABC90,点O是AC的中点,则BOAC21OACB二矩形知识的应用举例:二矩形知识的应用举例:例例1 在矩形ABCD中,直线DE是DCE与DFE的对称轴,若矩形与四边形ECDF的周长差是4,且四边形ECDF的周长是8,(1)求矩形ABCD的周长与面积;(2)直线FE与矩形ABCD有什么关系?分析分析:要想由条件得到图形中E、F分别是BC、AD中点,先判断出DCE与DFE是等腰直角三角形是解决问题的
3、关键;矩形与四边形ECDF的周长差实际就是AF与BE的和;EF垂直平分AD可发现直线EF是矩形的一条对称轴FEACBD213解:解:矩形ABCD中,ADCC90,ABDC,AD BC/又DCE与DFE关于直线DE对称 123,四边形ECDF中,CDCE,周长为8,ECCDDFFE2 DFE90ADFDBCEC 即AFBE矩形ABCD的周长四边形ECDF的周长AFBE4AFBE2矩形ABCD中,AD4,AB2矩形ABCD周长2(ADAB)12矩形ABCD面积ADAB428FEACBD213例例2 已知:如图,矩形ABCD中,DE平分ADC交AB于E,BDE15。求:BOC、AOE的度数 分析:由
4、矩形的特征及条件不难发现OAD是等边三角形,ADE是等腰直角三角形,利用这两个特殊三角形的特征就可以使问题得以解决ABCDEO解矩形ABCD ACBD AOOD ADC90DE平分ADC BDE15ADOADEBDE451560OAD为等边,BOCAOD60 ADAO DAO60又DAE90 ADE为等腰Rt AEADOAE906030 AOAE1180)752AOEOAE(ABCDEO例例3 已知:如图,矩形ABCD,DF平分ADC,BEAC于E,EB的延长线交DF于F点请猜测:BF与AC的数量关系,并说明理由 分析分析:由于矩形ABCD中,ACBD,BF与AC的数量关系实质就是BF与BD的
5、数量关系,由位置可通过角的关系得到让我们先来分析一组图形:ABCDEFo325610QBABCABCHFECA21FEABCH分析:分析:分析BFAC由位置关系可知应通过角的关系得到。与之相关的RtABC三角形中有斜边上高和中线,RtADC中有中线和角平分线.例例4 在矩形ABCD中,AB6,BC4,E是AB上一点,CE5,DFCE于F求DF 分析:分析:分析:由AB、BC可求S矩形,而EC、DF可以看作是DEC的底和高,因为 可求,所以EC边上的高可求。1=2DECSS矩FEDCBA解答:解答:连DE 矩形ABCD,且AB6,BC4 S矩形6424又AB/DC 1122DECSS矩244.8
6、5DF 1122DECEC DFSDFEC于FEC5FEDCBA例例5 有一块方角形钢板如下图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出)分析:分析:由于矩形对角线交点就是它的对称中心,因此经过对称中心的任意一直线都会将矩形分成两部分仍是关于中心对称的图形,所以面积相等,因此有:只要将图形化为两个矩形的和或差,作出经过两个图形对称中心的直线即可。例例6 如图,矩形ABCD中,AC与BD交于点O,P是AD上任意一点,PEAC于E,PFBD于F,若AB3,AD4,BD5。求:PEPF的值当点P在AD上移动时,其它条件不变,PEPF的值会改变吗?OPFEDC
展开阅读全文