书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型武科大Matlab仿真第七章系统时间响应及其仿真课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4618803
  • 上传时间:2022-12-25
  • 格式:PPT
  • 页数:31
  • 大小:308.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《武科大Matlab仿真第七章系统时间响应及其仿真课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    武科大 Matlab 仿真 第七 系统 时间 响应 及其 课件
    资源描述:

    1、第七章 系统时间响应及其仿真本章主要内容如下:7.1 仿真算法7.2 系统仿真的MATLAB函数 系统的时间响应是指系统在输入信号或初始状态作用下,系统输出随时间变化的情况。系统的时间响应反映了系统的特征和性能,如快速性、稳定性等。对系统时间响应的分析是我们设计、校正系统的基础。第七章 系统时间响应及其仿真7.1 仿真算法n对系统的时间响应进行动态仿真,采用什么样的仿真算法是一个至关重要的问题。对连续时间系统进行数字动态仿真,主要是两种方法:n 基于数值积分的仿真方法;n 基于离散相似法的仿真方法。由于后者涉及到离散控制系统理论,因此本节重点介绍基于数字积分的连续系统仿真方法。7.1 仿真算法

    2、7.1.1 数值求解的基本概念n设微分方程为 则求解方程中函数y(t)问题,就是已知初值的常微分方程求解问题。n所谓数值求解就是要在时间区间a,b中取若干离散点 求出微分方程在这些时刻的近似值n常微分方程数值求解的基本方法是数值积分法。00(,)()dyf t ydty ty01Natttb012Ny y yy()0,1,2kkyy tkN7.1 仿真算法7.1.2 数值积分的基本原理n积分区间的划分)1()(),(,(0ytybtatytfdtdyo将区间a,b分成 N个小区间,时间间隔h()也称为积分步长,在第k个间隔 t=tk,tk+1内积分:Nabh)2(),(11kkttkkdtyt

    3、fyy则可用yk(k=0,1,N)作为解y(t)的近似值,如图所示。abtky0ykyt数值积分图解tk+17.1 仿真算法7.1.2 数值积分的基本原理n数值积分的展开式 为避免(2)式中的积分项,将y在tk,以h为增量展开成Taylor级数:式(3)是一个递推公式。积分值与实际微分方程解的误差取决于步长h和计算所用的阶数,它是数值积分的基础。),2,1,0()3(3)3(!312)2(!211Nkhyhyhyyykkkkk)2(),(11kkttkkdtytfyy7.1 仿真算法7.1.2 数值积分的基本原理n有关概念n单步法和多步法 单步法指计算yk+1值只需利用tk时刻的信息,也称为自

    4、启动算法;多步法在计算yk+1值时,则需利用tk,tk-1,时刻的信息。n显示法和隐式法 显示法在计算yk+1时所需数据均已算出;隐式法在计算yk+1时需用到tk+1时刻的数据,该算法必须借助予估公式。n定步长和变步长 定步长为积分步长在仿真运行过程中始终不变;变步长指在仿真运行过程中自动修改步长。7.1 仿真算法7.1.3 数值积分的几个算法n欧拉算法 在(3)式中取前两项:可得欧拉算法:t0t1t2t3hy(t)y0y1yt欧拉近似解欧拉法n【说明】欧拉法是用一条过各点的切线取代曲线来逼近精确解。该算法简单,计算量小,但精度较低。)4(1mmmhyyy)5(),(),(),(1111200

    5、00100hytfyyhytfyyhytfyhyyymmmmty)3(3)3(!312)2(!211kkkkkhyhyhyyy7.1 仿真算法7.1.3 数值积分的几个算法n梯度法 梯度法是欧拉法的改进。n与欧拉法相比,梯度法是用两个点(tm,ym)、(tm+1,ym+1)的斜率的平均值来确定下一点的y值。n由于上式计算时需要用到ym+1的值,而ym+1不能预先知道,故梯度法需要和欧拉法结合使用,即用欧拉法对ym+1 进行予估,再由梯度法计算ym+1)3(3)3(!312)2(!211kkkkkhyhyhyyy),(),(11211mmmmmmytfytfhyy)6(),(),()(),(11

    6、2111(校正)予估mmmmmmmmmmytfytfhyyhytfyy7.1 仿真算法7.1.3 数值积分的几个算法n龙格龙格-库塔法库塔法n龙格龙格-库塔法的基本思想库塔法的基本思想 欧拉算法的精度较低,主要是其微分方程解 y 的 Taylor 展开式所取的项数太少。显然为了提高计算精度,应当取泰勒公式(3)更高阶项。虽然增加高阶项可提高计算精度,但也同时带来了需要计算高阶导数的困难。龙格龙格-库塔法库塔法的关键是利用低阶导数构成的曲线去拟合含有高阶导数的曲线,从而避免了计算高阶导数的问题。)3(3)3(!312)2(!211kkkkkhyhyhyyy7.1 仿真算法7.1.3 数值积分的几

    7、个算法n龙格龙格-库塔法库塔法n二阶龙格二阶龙格-库塔(库塔(RK)法)法 取(3)式的前三项,则有)3(3)3(!312)2(!211kkkkkhyhyhyyy)7(),(),(2212)2(211hytfythfyhyhyyymyfmmmtfmmmmmmm设原微分方程(1)式解具有以下形式:)8()(),(),(2211112121KaKahyyhKbyhbtfKytfKmmmmmm式中,a1,a2,b1,b2为待定系数。),(),()2(ytfdtdyytfdtdy)7(),(),(2211hytfythfyymyfmmmtfmmmm)8()(),(),(2211112121KaKahy

    8、yhKbyhbtfKytfKmmmmmm 将(8)式中K2按二元函数展开成泰勒级数,并取前三项)9(),(),(1211212myfmtfmmmyfmtfmmKbbhytfhKbhbytfK将K1,K2代入(8)式:)10(),(),()(),(),(),(21222121211myfmmmtfmmmmyfmmmtfmmmmmmytfbbhaythfaayythfbhbytfhaythfayy比较(6-10)、(6-7)式:)11(2/12/11221221babaaa 显然由(11)式并不能唯一确定a1,a2,b1,b2,因为只有三个方程。因此对于同一种算法可以有不同的表现形式。n【说明】由

    9、于该算法只取到泰勒展开式的二阶导数项,所以称为二阶龙格-库塔法。但由(8)(12)式可知,算法并没有用y的二阶导数。若设a1=a2,则12/12121bbaa即二阶RK法公式为)12()(2),(),(211121KKhyyhKyhtfKytfKmmmmmm)11(2/12/11221221babaaa7.1 仿真算法7.1.3 数值积分的几个算法n龙格龙格-库塔法库塔法n龙格龙格-库塔(库塔(RK)法的一般形式)法的一般形式 )13(,2,1),(1111riKbyhatfKKhyyijjijmimiiriimm式中,i为待定权系数,ai,bij为待定系数,r为使用Ki的个数(即级数),Ki

    10、为所取各点导数f的值。Ki的个数与yk+1泰勒展开式所取的项数有关(即RK算法的阶数),同时还与计算区间内所取导数值的点数有关。7.1 仿真算法7.1.3 数值积分的几个算法n龙格龙格-库塔法库塔法n四阶四阶RK公式公式 四阶RK公式用到了y的泰勒展开式的四阶导数。在RK算法的一般公式(13)中,取r=4可得:)14(),(),(),(),(223422123121221432161hKyhtfKhKytfKhKytfKytfKKKKKyymmmhmmhmmmhmm 由于(14)式在同级的RK算法中,计算精度较高,计算量较少,而在系统仿真的数值积分中应用十分广泛。称之为四阶四级RK公式。7.1

    11、 仿真算法7.1.3 数值积分的几个算法nGear算法n“病态”常微分方程(刚性方程)的系数矩阵A的特征值具有如下特征:00()()(),()X tAX tBU tX tX则称为“病态”方程。)17(50ReminRemax),2,1(0Reiiiini7.1 仿真算法7.1.3 数值积分的几个算法nGear算法n控制系统仿真中的“病态”问题n 病态系统中绝对值最大的特征值对应于系统动态性能解中瞬态分量衰减最快的部分,它反映了系统的动态响应和系统的反应灵敏度。一般与系统中具有最小时间常数Tmin的环节有关,要求计算步长h取得很小。n 病态系统中绝对值最小的特征值对应于系统动态性能解中瞬态分量衰

    12、减最慢的部分,它决定了整个系统的动态过渡过程时间的长短。一般与系统中具有最大时间常数Tmax的环节有关,要求计算步长h取得很大。n 对于病态问题的仿真需要寻求更加合理的算法,以解决病态系统带来的选取计算步长与计算精度、计算时间之间的矛盾。7.1 仿真算法7.1.3 数值积分的几个算法nGear算法nGear算法Gear算法适用于病态系统的仿真,该算法类似于四阶RK算法)18(21121,2112121,22,2,324213121KKyhthfKKKyhthfKKyhthfKythfKmmmmmmmm)19(6121131211316143211KKKKyymm7.1 仿真算法7.1.4 数值

    13、积分方法的选择 在选择积分方法时应考虑以下几个问题。n计算精度 数值积分方法所得到的离散数值解只是精确解的近似,其误差来自两个方面,即舍入误差和局部截断误差。n舍入误差舍入误差:由计算机字长有限而造成的计算时的舍入误差,它随计算次数的增加而增加。因此舍入误差与计算步长 h 成反比。n局部截断误差局部截断误差:由积分方法和阶次的限制而引起的误差。这种误差与h成正比。截断误差舍入误差总误差eh 误差与积分步长 显然选择一个合适的积分步长可使总误差达到最小。7.1.4 数值积分方法的选择n积分步长的选择和控制n积分步长的选择原则 在保证数值积分稳定性和精度的前提下,尽可能选则较大的积分步长,以减少仿

    14、真计算次数和仿真时间。n固定步长与变步长 固定步长固定步长:在整个仿真计算过程中,积分步长h始终不变。其算法简单,但很难保证步长最优。n此外,h还应与模型的信号响应情况有关,例如在稳态时,可取较大的步长,见上图。6.283212.566418.84960.9511.051.2843 y=1-e-tcost=0.3=0.7 镇定时间 ts=9.6133 t y 变步长:变步长:在仿真计算过程中根据计算误差的大小来改变步长。其目的是在保证一定计算精度的前提下,尽可能选择较大步长。7.2 系统仿真的MATLAB函数7.2.1 数值积分方法的MATLAB函数n对于用数值方法求解常系数微分方程(Ordi

    15、nary Differential Equation,简写为ODE)或微分方程组,MATLAB提供了七种解函数,最常用的是ODE45(四阶RK算法,单步、变步长,用五阶RK算法估算局部截断误差),其调用格式为:T,Y=ode45(f,tspan,y0)n【说明1】f 为常微分方程(组)或系统模型的文件名;tspan=t0,tfinal 即积分时间初值和终值;y0是积分初值;T为计算时间点的时间向量;Y为相应的微分方程解数据向量或矩阵。7.2 系统仿真的MATLAB函数7.2.1 数值积分方法的MATLAB函数n【说明2】对于刚性微分方程(特征值数值相差较大),可用ode15s,其调用格式与od

    16、e45相同。ode函数只能用于求解一阶微分方程或一阶微分方程组。若系统的数学模型为高阶微分方程,则应将高阶微分方程转化成一阶微分方程组。因此在用MATLAB的ode函数求解微分方程时,应首先建立描述系统模型的一阶微分方程(组)函数f。【例2】已知二阶 微分方程 求时间区间t=0,20微分方程的解。1)0(,0)0(0)1(2yyyyyy 解:解:(1)将微分方程表示为一阶微分方程组12212211)1(yyyyyyyyn【说明】这种描述系统微分方程的函数与ODE函数配套使用,其格式是固定的。dy为2*1数组,其维数等于微分方程的阶数。(2)建立描述系统微分方程的m-函数文件vdp.mfunct

    17、ion dy=vdp(t,y)dy=zeros(2,1);%生成2行1列的零阵dy(1)=y(2);%dy(2)=(1-y(1)2)*y(2)-y(1);%21yy 12212)1(yyyy(3)编写MATLAB主程序T,Y=ode45(VDPd,0 20,0,1);%调用ode45产生离散点时间向量和解向量plot(T,Y(:,1),r-,T,Y(:,2),b:)title(Solution)xlabel(time s),ylabel(Position Y)legend(y1,y2)运行结果如右图所示。其中y1(红线)为微分方程的解。7.2 系统仿真的MATLAB函数7.2.2 时间响应仿真

    18、的MATLAB函数 对于线性时不变系统,MATLAB直接提供了在各种输入作用下的时间响应函数。n阶跃响应仿真函数(STEP)n基本调用格式 对于LTI连续(或离散)时间系统,以下调用格式可用于绘制系统单位阶跃响应曲线。step(sys)step(sys,Tfinal)其中,sys为系统模型(传递函数);Tfinal为仿真终止时间,若省略则由系统默认。【例4】已知系统模型 ,求其单位阶跃响应。51)(2ssssGsys=tf(1,-1,1,1,5)subplot(1,2,1),step(sys,20)subplot(1,2,2),step(sys)建立系统模型指定阶跃响应时间不指定阶跃响应时间7

    19、.2.2 时间响应仿真的MATLAB函数n阶跃响应仿真函数(STEP)n多系统阶跃响应调用格式 在同一幅图中绘制多个系统的单位阶跃响应曲线,可用以下调用格式:这种调用格式,还可定义每个系统响应曲线的颜色、线型和标志,例如n返回仿真输出的调用格式 其中,Y为输出响应,T为仿真时间向量。这种调用格式不绘制仿真曲线图。step(sys1,sys2,)step(sys1,r,sys2,y-,sys3,gx)Y,T=step(sys)7.2 系统仿真的MATLAB函数7.2.2 时间响应仿真的MATLAB函数n脉冲响应仿真函数(IMPULSE)IMPULSE函数用来计算LTI系统的单位脉冲响应。其调用格

    20、式与STEP函数相同。impulse(sys)impulse(sys,Tfinal)impulse(sys1,sys2,)Y,T=impulse(sys)7.2.2 时间响应仿真的MATLAB函数n信号发生器和任意输入响应函数MATLAB也可计算LTI系统在任意输入作用下的时间响应。n信号发生器函数 GENSIG GENSIG可为系统时间响应产生周期输入信号,其调用格式为:其中,Type为信号类型:sin正弦波 square方波 pulse周期脉冲波 Tau为信号周期;U为信号值向量;T为与U对应的时间向量;Tf为信号的时间区间;Ts为采样周期。U,T=gensig(Type,Tau)U,T=

    21、gensig(Type,Tau,Tf,Ts)7.2.2 时间响应仿真的MATLAB函数n信号发生器和任意输入响应函数n 任意输入响应函数 LSIM LSIM用来仿真系统对任意输入的时间响应,并绘制响应曲线。其调用格式为:其中,sys为系统模型;U为输入信号向量;T为和输入对应的时间向量;Ys为响应值向量;Ts为与Ys相对应的时间向量。lsim(sys,U,T)%基本调用格式lsim(sys1,sys2,U,T)%绘制多个系统对同一个任意输入响应曲线Ys,Ts=lsim(sys,U,T)%该格式不绘制响应曲线【例7】已知系统模型 ,计算系统在周期为5s的方波信号作用下的响应。sys=tf(3,100,1,10,40,100);u,t=gensig(square,5,10);%产生方波信号数据lsim(sys,r,u,t),hold on%产生方波响应并绘曲线plot(t,u,-.)%在同一坐标系绘方波波形hold offtext(1.3,0.8,输入rightarrow)text(5.4,0.8,leftarrow输出)10040101003)(23sssssG练习教材126-127页:1、2、3题

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:武科大Matlab仿真第七章系统时间响应及其仿真课件.ppt
    链接地址:https://www.163wenku.com/p-4618803.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库