最新北师大版初中九年级数学上册12-第1课时-矩形的性质公开课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新北师大版初中九年级数学上册12-第1课时-矩形的性质公开课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 北师大 初中 九年级 数学 上册 12 课时 矩形 性质 公开 课件 下载 _九年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、1.2 矩形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第1课时 矩形的性质学习目标1.理解矩形的概念,知道矩形与平行四边形的区别与 联系.(重点)2.会证明矩形的性质,会用矩形的性质解决简单的问 题.(重点、难点)3.掌握直角三角形斜边中线的性质,并会简单的运用.(重点)观察下面图形,长方形在生活中无处不在.导入新课导入新课情景引入思考 长方形跟我们前面学习的平行四边形有什么关系?你还能举出其他的例子吗?讲授新课讲授新课矩形的性质一活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.矩形平行四边形矩形有一个角 是直角矩形是特殊的平行四
2、边形.定义:有一个角是直角的平行四边形叫做矩形.也叫做长方形.归纳总结平行四边形不一定是矩形.思考 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?可以从边,角,对角线等方面来考虑.活动2:准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.ABCDOAB AD AC BD BAD ADC AOD AOB橡皮擦课本桌子物体测量(实物)(形象图)(2)根据测量的结果,你有什么猜想?猜想1 矩形
3、的四个角都是直角.猜想2 矩形的对角线相等.你能证明吗?证明:四边形ABCD是矩形,B=D,C=A,ABDC.B+C=180.又B=90,C=90.B=C=D=A=90.如图,四边形ABCD是矩形,B=90.求证:B=C=D=A=90.ABCD证一证证明:四边形ABCD是矩形,AB=DC,ABC=DCB=90,在ABC和DCB中,AB=DC,ABC=DCB,BC=CB,ABC DCB.AC=DB.ABCDO如图,四边形ABCD是矩形,ABC=90,对角线AC与DB相较于点O.求证:AC=DB.矩形除了具有平行四边形所有性质,还具有的性质有:矩形的四个角都是直角.矩形的对角线相等.归纳总结几何语
4、言描述:在矩形ABCD中,对角线AC与DB相交于点O.ABC=BCD=CDA=DAB=90,AC=DB.ABCDO例1 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AOB=60,AB=4,求矩形对角线的长.解:四边形ABCD是矩形.AC=BD,OA=OC=AC,OB=OD=BD,OA=OB.又AOB=60,OAB是等边三角形,OA=AB=4,AC=BD=2OA=8.ABCDO典例精析矩形的对角线相等且互相平分例2 如图,在矩形ABCD中,E是BC上一点,AE=AD,DFAE,垂足为F.求证:DF=DC.ABCDEF证明:连接DE.AD=AE,AED=ADE.四边形ABCD是矩形,A
5、DBC,C=90.ADE=DEC,DEC=AED.又DFAE,DFE=C=90.又DE=DE,DFE DCE,DF=DC.例3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于点E,AD8,AB4,求BED的面积解:四边形ABCD是矩形,ADBC,A90,23.又由折叠知12,13,BEDE.设BEDEx,则AE8x.在RtABE中,AB2AE2BE2,42(8x)2x2,解得x5,即DE5.SBED DEAB 5410.矩形的折叠问题常与勾股定理结合考查思考 请同学们拿出准备好的矩形纸片,折一折,观察并思考.矩形是不是轴对称图形?如果是,那么对称轴有几条?矩形的性质:对称性
展开阅读全文