数学建模讲义线性规划模型2-运输问题等课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模讲义线性规划模型2-运输问题等课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 讲义 线性规划 模型 运输 问题 课件
- 资源描述:
-
1、rxdtdx-运输问题等其他费用其他费用:450元元/千吨千吨 应如何分配水库供水量,公司才能获利最多?应如何分配水库供水量,公司才能获利最多?若水库供水量都提高一倍,公司利润可增加到多少?若水库供水量都提高一倍,公司利润可增加到多少?元元/千吨千吨甲甲乙乙丙丙丁丁A160130220170B140130190150C190200230/引水管理费引水管理费收入:收入:900元元/千吨千吨 支出支出A:50B:60C:50甲:甲:30;50乙:乙:70;70丙:丙:10;20丁:丁:10;40水库供水量水库供水量(千吨千吨)小区基本用水量小区基本用水量(千吨千吨)小区额外用水量小区额外用水量(
2、千吨千吨)(以天计)(以天计)总供水量:总供水量:160确定送水方案确定送水方案使利润最大使利润最大问题问题分析分析A:50B:60C:50甲:甲:30;50乙:乙:70;70丙:丙:10;20丁:丁:10;40 总需求量:总需求量:120+180=300总收入总收入900 160=144,000(元元)收入:收入:900元元/千吨千吨 其他费用其他费用:450元元/千吨千吨 支出支出引水管理费引水管理费其他其他支出支出450160=72,000(元)使引水管理费最小使引水管理费最小供应供应限制限制约束约束条件条件需求需求限制限制 线性线性规划规划模型模型(LP)5014131211xxxx5
3、06033323124232221xxxxxxx8030312111xxx14070322212xxx3010332313xxx50102414xx目标目标函数函数 3332312423222114131211230200190150190130140170220130160 xxxxxxxxxxxZMin水库水库i 向向j 区的日供水量为区的日供水量为 xij(x34=0)决策变量决策变量 模型建立模型建立 确定确定3个水库向个水库向4个小区的供水量个小区的供水量 模型求解模型求解 OBJECTIVE FUNCTION VALUE 1)24400.00 VARIABLE VALUE REDU
4、CED COST X11 0.000000 30.000000 X12 50.000000 0.000000 X13 0.000000 50.000000 X14 0.000000 20.000000 X21 0.000000 10.000000 X22 50.000000 0.000000 X23 0.000000 20.000000 X24 10.000000 0.000000 X31 40.000000 0.000000 X32 0.000000 10.000000 X33 10.000000 0.000000 利润利润=总收入总收入-其它费其它费用用-引 水 管 理 费引 水 管 理
5、费=144000-72000-24400=47600(元)(元)A(50)B(60)C(50)甲甲(30;50)乙乙(70;70)丙丙(10;20)丁丁(10;40)5050401010引水管理费引水管理费 24400(元元)设每月生产小、中、大型设每月生产小、中、大型汽车的数量分别为汽车的数量分别为x1,x2,x3321432xxxzMax600535.1.321xxxts60000400250280321xxx0,321xxx2 0-12 0-1规划:汽车厂生产计划规划:汽车厂生产计划 4.3模型建立模型建立 小型小型 中型中型 大型大型 现有量现有量钢材钢材 1.5 3 5 600时间时
6、间 280 250 400 60000利润利润 2 3 4 线性线性规划规划模型模型(LP)模型模型求解求解 3)模型中增加条件:模型中增加条件:x1,x2,x3 均为整数,重新求解。均为整数,重新求解。OBJECTIVE FUNCTION VALUE 1)632.2581VARIABLE VALUE REDUCED COST X1 64.516129 0.000000 X2 167.741928 0.000000 X3 0.000000 0.946237 ROW SLACK OR SURPLUS DUAL PRICES 2)0.000000 0.731183 3)0.000000 0.003
7、226结果为小数,结果为小数,怎么办?怎么办?1)舍去小数:取)舍去小数:取x1=64,x2=167,算出目标函数值,算出目标函数值z=629,与,与LP最优值最优值632.2581相差不大。相差不大。2)试探:如取)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数等,计算函数值值z,通过比较可能得到更优的解。,通过比较可能得到更优的解。但必须检验它们是否满足约束条件。为什么?但必须检验它们是否满足约束条件。为什么?IP可用可用LINGO直接求解直接求解整数规划整数规划(Integer Programming,简记简记IP)IP 的最优解的最优解x1=64,x2=168
8、,x3=0,最优值,最优值z=632 Max=2*x1+3*x2+4*x3;1.5*x1+3*x2+5*x3600;280*x1+250*x2+400*x360000;gin(x1);gin(x2);gin(x3);OBJECTIVE FUNCTION VALUE 1)632.0000VARIABLE VALUE REDUCED COST X1 64.000000 -2.000000 X2 168.000000 -3.000000 X3 0.000000 -4.000000 321432xxxzMax600535.1.321xxxts60000400250280321xxx为非负整数321,x
9、xx模型求解模型求解 IP 结果输出结果输出其中其中3个个子模型应子模型应去掉,然后去掉,然后逐一求解,比较目标函数值,逐一求解,比较目标函数值,再加上整数约束,得最优解:再加上整数约束,得最优解:80,0,0321xxx0,80,0321xxx80,80,0321xxx0,0,80321xxx0,80,80321xxx80,0,80321xxx80,80,80321xxx0,321xxx方法方法1:分解为:分解为8个个LP子模型子模型 汽车厂生产计划汽车厂生产计划 若生产某类汽车,则至少生产若生产某类汽车,则至少生产8080辆,求生产计划。辆,求生产计划。321432xxxzMax60053
10、5.1.321xxxts60000400250280321xxxx1,x2,x3=0 或或 80 x1=80,x2=150,x3=0,最优值,最优值z=610LINGO中对中对0-1变量的限定:变量的限定:bin(y1);bin(y2);bin(y3);方法方法2:引入引入0-1变量,化为整数规划变量,化为整数规划 M为大的正数,为大的正数,可取可取1000 OBJECTIVE FUNCTION VALUE 1)610.0000VARIABLE VALUE REDUCED COST X1 80.000000 -2.000000 X2 150.000000 -3.000000 X3 0.0000
11、00 -4.000000 Y1 1.000000 0.000000 Y2 1.000000 0.000000 Y3 0.000000 0.000000 若生产某类汽车,则至少生产若生产某类汽车,则至少生产8080辆,求生产计划。辆,求生产计划。x1=0 或 80 x2=0 或 80 x3=0 或 801,0,80,11111yyxMyx1,0,80,22222yyxMyx1,0,80,33333yyxMyx最优解同前最优解同前 NLP虽然可用现成的数学软件求解虽然可用现成的数学软件求解(如如LINGO,MATLAB),但是其结果常依赖于初值的选择。,但是其结果常依赖于初值的选择。方法方法3:化
12、为非线性规划化为非线性规划 非线性规划(非线性规划(Non-Linear Programming,简记,简记NLP)实践表明,本例仅当初值非常接近上面方法算出实践表明,本例仅当初值非常接近上面方法算出的最优解时,才能得到正确的结果。的最优解时,才能得到正确的结果。若生产某类汽车,则至少生产若生产某类汽车,则至少生产8080辆,求生产计划。辆,求生产计划。x1=0 或 80 x2=0 或 80 x3=0 或 800)80(11xx0)80(22xx0)80(33xx丁的蛙泳成绩退步到丁的蛙泳成绩退步到115”2;戊的自由泳成绩进;戊的自由泳成绩进步到步到57”5,组成接力队的方案是否应该调整组成
13、接力队的方案是否应该调整?如何选拔队员组成如何选拔队员组成4 4 100100米混合泳接力队米混合泳接力队?甲甲乙乙丙丙丁丁戊戊蝶泳蝶泳106”857”2118”110”107”4仰泳仰泳115”6106”107”8114”2111”蛙泳蛙泳127”106”4124”6109”6123”8自由泳自由泳58”653”59”457”2102”45名候选人的名候选人的百米成绩百米成绩穷举法穷举法:组成接力队的方案共有组成接力队的方案共有5!=120种种。目标目标函数函数若选择队员若选择队员i参加泳姿参加泳姿j 的比赛,记的比赛,记xij=1,否则记否则记xij=0 cij(秒秒)队员队员i 第第j
14、种泳姿的百米成绩种泳姿的百米成绩约束约束条件条件每人最多入选泳姿之一每人最多入选泳姿之一 ciji=1i=2i=3i=4i=5j=166.857.2787067.4j=275.66667.874.271j=38766.484.669.683.8j=458.65359.457.262.44151jiijijxcZMin每种泳姿有且只有每种泳姿有且只有1 1人人 5,1,141ixjij4,1,151jxiij模型求解模型求解 最优解:最优解:x14=x21=x32=x43=1,其它变量为其它变量为0;成绩为成绩为253.2(秒秒)=413”2 MIN=66.8*x11+75.6*x12+87*x
15、13 +58.6*x14+62.4*x54;x11+x12+x13+x14=1;x41+x42+x43+x44=1;x11+x21+x31+x41+x51=1;x14+x24+x34+x44+x54=1;bin(x11);.;bin(x54);输入输入LINGO求求解解 甲甲乙乙丙丙丁丁戊戊蝶泳蝶泳106”857”2118”110”107”4仰泳仰泳115”6106”107”8114”2111”蛙泳蛙泳127”106”4124”6109”6123”8自由泳自由泳58”653”59”457”2102”4甲甲 自由泳、乙自由泳、乙 蝶泳、蝶泳、丙丙 仰泳、丁仰泳、丁 蛙泳蛙泳.丁蛙泳丁蛙泳c43=
16、69.675.2,戊自由泳,戊自由泳c54=62.4 57.5,方案是否调整?方案是否调整?敏感性分析?敏感性分析?乙乙 蝶泳、丙蝶泳、丙 仰泳、仰泳、丁丁 蛙泳、戊蛙泳、戊 自由泳自由泳IP规划一般没有与规划一般没有与LP规划相类似的理论,规划相类似的理论,LINDO输出的敏感性分析结果通常是没有意义的。输出的敏感性分析结果通常是没有意义的。最优解:最优解:x21=x32=x43=x51=1,成绩为成绩为417”7 c43,c54 的新数据重新输入模型,用的新数据重新输入模型,用LINDO求解求解 指派指派(Assignment)问题问题:每项任务有且只有一人承担,每项任务有且只有一人承担,
17、每人只能承担一项每人只能承担一项,效益不同,怎样分派使总效益最大,效益不同,怎样分派使总效益最大.讨论讨论甲甲 自由泳、乙自由泳、乙 蝶泳、蝶泳、丙丙 仰泳、丁仰泳、丁 蛙泳蛙泳.原原方方案案为了选修课程门数最少,应学习哪些课程为了选修课程门数最少,应学习哪些课程?要求至少选两门数学课、三门运筹学课和两门计算机课要求至少选两门数学课、三门运筹学课和两门计算机课 课号课号课名课名学分学分所属类别所属类别先修课要求先修课要求1微积分微积分5数学数学 2线性代数线性代数4数学数学 3最优化方法最优化方法4数学;运筹学数学;运筹学微积分;线性代数微积分;线性代数4数据结构数据结构3数学;计算机数学;计
18、算机计算机编程计算机编程5应用统计应用统计4数学;运筹学数学;运筹学微积分;线性代数微积分;线性代数6计算机模拟计算机模拟3计算机;运筹学计算机;运筹学计算机编程计算机编程7计算机编程计算机编程2计算机计算机 8预测理论预测理论2运筹学运筹学应用统计应用统计9数学实验数学实验3运筹学;计算机运筹学;计算机微积分;线性代数微积分;线性代数选修课程最少,且学分尽量多,应学习哪些课程选修课程最少,且学分尽量多,应学习哪些课程?0-1规划模型规划模型 决策变量决策变量 目标函数目标函数 xi=1 选修课号选修课号i 的的课程(课程(xi=0 不选)不选)91iixZMin选修课程总数最少选修课程总数最
19、少 约束条件约束条件最少最少2门数学课,门数学课,3门运筹学课,门运筹学课,2门计算机课。门计算机课。254321xxxxx398653xxxxx29764xxxx课号课号课名课名所属类别所属类别1微积分微积分数学数学2线性代数线性代数数学数学3最优化方法最优化方法数学;运筹学数学;运筹学4数据结构数据结构数学;计算机数学;计算机5应用统计应用统计数学;运筹学数学;运筹学6计算机模拟计算机模拟计算机;运筹学计算机;运筹学7计算机编程计算机编程计算机计算机8预测理论预测理论运筹学运筹学9数学实验数学实验运筹学;计算机运筹学;计算机先修课程要求先修课程要求74xx 02215xxx076 xx05
20、8xx02219xxx最优解:最优解:x1=x2=x3=x6=x7=x9=1,其它为其它为0;6门课程,总学分门课程,总学分21 02213xxx0-1规划模型规划模型 约束条件约束条件x3=1必有必有x1=x2=12313,xxxx074 xx模型求解(模型求解(LINGO)课号课号课名课名先修课要求先修课要求1微积分微积分 2线性代数线性代数 3最优化方法最优化方法微积分;线性代数微积分;线性代数4数据结构数据结构计算机编程计算机编程5应用统计应用统计微积分;线性代数微积分;线性代数6计算机模拟计算机模拟计算机编程计算机编程7计算机编程计算机编程 8预测理论预测理论应用统计应用统计9数学实
展开阅读全文