实际气体的性质及热力学一般关系式课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《实际气体的性质及热力学一般关系式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际 气体 性质 热力学 一般 关系式 课件
- 资源描述:
-
1、第六章第六章 实际气体的性质及热力学一般实际气体的性质及热力学一般关系式关系式6-1 6-1 理想气体状态方程用于实际气体的偏差理想气体状态方程用于实际气体的偏差6-2 6-2 范德瓦尔方程和范德瓦尔方程和R-KR-K方程方程6-3 6-3 对应态原理与通用压缩因子图对应态原理与通用压缩因子图6-4 6-4 维里方程维里方程6-5 6-5 麦克斯韦关系和热系数麦克斯韦关系和热系数6-6 6-6 热力学能、焓和熵的一般关系式热力学能、焓和熵的一般关系式6-7 6-7 比热容的一般关系式比热容的一般关系式6-1 6-1 理想气体状态方程用于实际气体的偏差理想气体状态方程用于实际气体的偏差压缩因子压
2、缩因子 (compressibility factor)()(,)/mggipVpvvvZf p TR TRTR TpvZ压缩因子是温度和压力相同时,实际气体的比体积与压缩因子是温度和压力相同时,实际气体的比体积与将其作为理想气体的比体积之比,可以描述实际气体对将其作为理想气体的比体积之比,可以描述实际气体对理想气体的偏离程度。理想气体的偏离程度。理想气体:理想气体:。实际气体:实际气体:或或 ,高压低温下偏离,高压低温下偏离1 1更大。更大。压缩因子不仅与气体的种类有关,还与气体的状态有压缩因子不仅与气体的种类有关,还与气体的状态有关,是状态参数。关,是状态参数。1Z 1Z 1Z 实际气体偏
3、离理想气体的原因实际气体偏离理想气体的原因实际气体分子之间存在作用力。当压力增大时,气体实际气体分子之间存在作用力。当压力增大时,气体被压缩,分子之间的引力增大,实际气体的比体积比理被压缩,分子之间的引力增大,实际气体的比体积比理想气体要小。因此压缩因子小于想气体要小。因此压缩因子小于1 1,且随着压力的增大,且随着压力的增大不断减小。不断减小。当压力继续增大时,分子之间的斥力增大,实际气体当压力继续增大时,分子之间的斥力增大,实际气体的比体积逐渐增大,直至比理想气体要大。因此压缩因的比体积逐渐增大,直至比理想气体要大。因此压缩因子大于子大于1 1,且随着压力的增大不断增大。,且随着压力的增大
4、不断增大。6-2 6-2 范德瓦尔方程和范德瓦尔方程和R-KR-K方程方程1 1、范德瓦尔方程、范德瓦尔方程(Van der Waals equation)范德瓦尔状态方程范德瓦尔状态方程2(/)()mmpa VVbRT2/()/mmpRTVba V2(/)()gpa vvbR T a a、b b范德瓦尔常数,与气体种类有关。范德瓦尔常数,与气体种类有关。32()0mmmpVbpRT VaVab实际气体的等温线实际气体的等温线 COCO2 2在各个温度下等温压缩,测得不同压力和所对在各个温度下等温压缩,测得不同压力和所对应的比体积,就可以在应的比体积,就可以在 图上得到一组等温线。图上得到一组
5、等温线。COCO2 2的临界温度的临界温度 。当温度低于临界温度时,等温线有一段水平线,相当当温度低于临界温度时,等温线有一段水平线,相当于液化过程。此时,一个压力对应多个比体积。于液化过程。此时,一个压力对应多个比体积。当温度等于临界温度时,等温线的水平线变为一点,当温度等于临界温度时,等温线的水平线变为一点,称为临界点称为临界点C C。此时,一个压力只对应一个比体积。此时,一个压力只对应一个比体积。当温度高于临界温度时,等温线不再有水平线,说明当温度高于临界温度时,等温线不再有水平线,说明压力再高,气体也不可能液化。此时,一个压力只对应压力再高,气体也不可能液化。此时,一个压力只对应一个比
6、体积。一个比体积。pv304KcrT 范德瓦尔常数范德瓦尔常数由实验数据拟合得到,见由实验数据拟合得到,见表表6-16-1。由临界参数计算得到由临界参数计算得到 临界点是临界等温线的驻点和拐点:临界点是临界等温线的驻点和拐点:(/)0crm TpV22(/)0crmTpV227crapb827craTRb,3m crVb2()2764crcrRTap8crcrRTbp,83crm crcrp VRT解得:解得:临界压缩因子临界压缩因子 实际气体实际气体 (平均值约为(平均值约为0.270.27),说),说明范德瓦尔方程在明范德瓦尔方程在临界状态附近临界状态附近有较大的误差。有较大的误差。,0.
7、375crm crcrcrp VZRT0.230.29crZ2 2、R-KR-K方程方程 常数常数a a、b b由实验数据拟合得到,或者由临界参数计由实验数据拟合得到,或者由临界参数计算得到:算得到:0.5()mmmRTapVbTV Vb22.50.42748crcrR Tap0.08664crcrRTbp解:解:(1 1)利用理想气体状态方程)利用理想气体状态方程例例6-16-1:实验测得氮气在实验测得氮气在 ,比体积,比体积 时时压力为压力为10MPa10MPa,分别根据(,分别根据(1 1)理想气体状态方程,()理想气体状态方程,(2 2)范德瓦)范德瓦尔方程计算压力值,并与实验值比较。
8、尔方程计算压力值,并与实验值比较。175KT 30.00375m/kgv/297 175/0.0037513.86MPagpR T v(2 2)利用)利用范德瓦尔方程范德瓦尔方程13.86 10100%38.6%102/()/9.546MPagpR Tvba v 查表查表6-16-1,62173.5mPa/kga 30.001375m/kgb 9.546 10100%4.5%10 6-3 6-3 对应态原理与通用压缩因子图对应态原理与通用压缩因子图1 1、对应态原理、对应态原理(principle of corresponding states)对于没有实验数据的气体,需要消掉状态方程中与对于
9、没有实验数据的气体,需要消掉状态方程中与气体种类有关的常数。气体种类有关的常数。对比参数:相对于临界参数的对比值,对比参数:相对于临界参数的对比值,对比压力:对比压力:对比温度:对比温度:对比比体积:对比比体积:理想对比体积:理想对比体积:(实际气体的比体积(或摩尔体积)与临界状态时将其(实际气体的比体积(或摩尔体积)与临界状态时将其作为理想气体的比体积(或摩尔体积)之比。)作为理想气体的比体积(或摩尔体积)之比。)/rcrpp p/rcrTT T,/rcrmm crvv vVV,/mmm i crVVV,/ri crvv v范德瓦尔对比态方程范德瓦尔对比态方程 上式没有与气体种类有关的常数,
10、适用于一切符合上式没有与气体种类有关的常数,适用于一切符合范德瓦尔方程的气体。范德瓦尔方程的气体。对应态原理对应态原理对于满足同一对比态方程的物质,对比参数中只要对于满足同一对比态方程的物质,对比参数中只要有两个相同,则第三个也相同,即:有两个相同,则第三个也相同,即:(,)0rrrf p T v2(3/)(31)8rrrrpvvT满足同一对比态方程的物质称为热力学上相似的物满足同一对比态方程的物质称为热力学上相似的物质。凡是临界压缩因子相近的物质可以看作热相似。质。凡是临界压缩因子相近的物质可以看作热相似。2 2、通用压缩因子图、通用压缩因子图压缩因子图压缩因子图 ,根据实验数据,可以得到压
11、缩因子,根据实验数据,可以得到压缩因子图(图(关系图)。关系图)。通用压缩因子图通用压缩因子图(generalized compressibility chart)取取 ,则:,则:。根据实验数据,可以得到通用压缩因子图根据实验数据,可以得到通用压缩因子图(关系图),见关系图),见图图6-46-4。,/()(,)/()mrrrrcrcrcrm crcrrpVRTp vZZf p T ZZp VRTT(,)rrZf p T(,)Zf p T0.27crZZpTrrZpTN-ON-O图图 比较精确。比较精确。低压区:低压区:,见,见图图6-56-5。中压区:中压区:,见,见图图6-66-6。高压区
12、:高压区:,见,见图图6-76-7。0 1rp 1 10rp 10rp 解:解:查附表查附表2 2,。154KcrT5.05MPacrp6259.8 1601.110.90.0074 5.05 10grrcrcrZR TpZpZZppvp/160/1541.04rcrTT T0.9rZp1.04rT 0.79rp 0.79 5.054MParcrpp p例例6-26-2:利用通用压缩因子图确定氧气在温度利用通用压缩因子图确定氧气在温度160K160K、比体积为、比体积为 时的压力。时的压力。30.0074m/kg 通过描点,在图通过描点,在图6-46-4得到直线得到直线 ,与,与 的曲的曲线交
13、与一点,查得:线交与一点,查得:。解:解:查附表查附表2 2,。370KcrT4.27MPacrp/10.1325/4.272.373rcrpp p336,44.06 107.81 100.478/8.3145 370/(4.27 10)mmm i crcrcrVMvVVRTp1.45rT o1.45 370536.5K=263.35 CrcrTT T263.35253.2100%=4%253.2例例6-36-3:体积为体积为 、压力为、压力为10.1325MPa10.1325MPa的的1kg1kg丙烷,实丙烷,实测温度为测温度为253.2253.2,试用压缩因子图确定丙烷的温度。,试用压缩因
14、子图确定丙烷的温度。337.81 10 m 查图查图6-66-6,得:,得:6-4 6-4 维里方程维里方程 B B、C C、D D分别为第二、第三、第四维里系数,是分别为第二、第三、第四维里系数,是温度的函数,可由实验测定。温度的函数,可由实验测定。维里方程具有理论基础,适应性广;一般只取前两维里方程具有理论基础,适应性广;一般只取前两项;低压时具有较高的精度,高压时精度不高。项;低压时具有较高的精度,高压时精度不高。231.gpvBCDZR Tvvv 6-5 6-5 麦克斯韦关系和热系数麦克斯韦关系和热系数1 1、全微分条件和循环关系、全微分条件和循环关系全微分条件全微分条件(total
15、differential)对于简单可压缩系,状态参数对于简单可压缩系,状态参数z z可以表示为两个独可以表示为两个独立参数的函数:立参数的函数:(,)zz x yyxzzdzdxdyMdxNdyxy22,yyxxMZNZMNyx yxy xyx 上式称为全微分条件(或全微分判据),是判断参上式称为全微分条件(或全微分判据),是判断参数是否为状态参数的数是否为状态参数的充要条件充要条件。循环关系循环关系0yxzzzconstdzdxdyxy1yxzxzyyxz 链式关系链式关系 对于简单可压缩系,有对于简单可压缩系,有4 4个状态参数个状态参数x x、y y、z z、w w。01wwwxyzwc
展开阅读全文