最新北师大版初中九年级数学下册15-三角函数的应用公开课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新北师大版初中九年级数学下册15-三角函数的应用公开课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 北师大 初中 九年级 数学 下册 15 三角函数 应用 公开 课件 下载 _九年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、1.5 三角函数的应用导入新课讲授新课当堂练习课堂小结第一章 直角三角形的边角关系1.正确理解方位角、仰角和坡角的概念;(重点)2.能运用解直角三角形知识解决方位角、仰角和坡角 的问题.(难点)学习目标情境引入 我们已经知道轮船在海中航行时,可以用方位角准确描述它的航行方向.那你知道如何结合方位角等数据进行计算,帮助轮船在航行中远离危险吗?泰坦尼克号.mp4引例 如图,一船以20 n mile/h 的速度向东航行,在A处测得灯塔C在北偏东60方向上,继续航行 1 h 到达B处,再测得灯塔C在北偏东30方向上.已知灯塔C四周 10 n mile内有暗礁,问这船继续向东航行,是否安全?ACB60与
2、方位角有关的实际问题一讲授新课讲授新课D【分析】这船继续向东航行是否安全,取决于灯塔C到AB航线的距离是否大于 10 n mile.北东解:由点C作CDAB,设CD=x,则在RtACD中,在RtBCD中,解得10 310 x 所以,这船继续向东航行是安全的.ACBD3060北东tantan30CDxADCADtantan60CDxBDCBD由AB=AD-BD,得20,tan30tan60 xxAB 如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?65
3、34PBCA试一试解:如图,在RtAPC中,PCPAcos(9065)80cos25800.91=72.8在RtBPC中,B34sinPCBPB72.872.8130.23sinsin340.559PCPBB当海轮到达位于灯塔P的南偏东34方向时,它距离灯塔P大约130.23海里6534PBCA利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案方法归纳例1 如图所示,为了测量山的高度AC,在水平面B处测得山顶A的
4、仰角为30,ACBC,自B沿着BC方向向前走1000m,到达D处,又测得山顶A的仰角为45,求山高(结果保留根号)分析:要求AC,无论是在RtACD中,还是在RtABC中,只有一个角的条件,因此这两个三角形都不能解,所以要用方程思想,先把AC看成已知,用含AC的代数式表示BC和DC,由BD1000m建立关于AC的方程,从而求得AC.仰角和俯角问题二解:在RtABC中,3=tan=tan30=,3ACBBC=3.BCAC 在RtACD中,=tan=tan45=1,ACADCDC=.DCACBDBCDC=3-ACAC()=3-1=1000AC()()1000=5003+1m.3-1AC例2 如图,
5、飞机A在目标B正上方1000m处,飞行员测得地面目标C的俯角为30,则地面目标B,C之间的距离是_解析:由题意可知,在RtABC中,B90,CCAD30,AB1000m,()1000=1000 3 m.tantan30ABBCC【方法总结】解此类问题,首先要找到合适的直角三角形,然后根据已知条件解直角三角形例3 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,=30,=60.RtAB
6、D中,=30,AD120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BCABCD仰角水平线俯角解:如图,=30,=60,AD120tan,tanBDCDADADQtan120 tan30BDAD312040 33tan120 tan60CDAD1203120 340 3120 3BCBDCD160 3277.1答:这栋楼高约为277.1m.ABCD建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角为54,观察底部B的仰角为45,求旗杆的高度(精确到0.1m).ABCD40m5445ABCD40m5445解:在等腰三角形BCD中ACD=90,BC=DC=40
展开阅读全文