第3章地震组合法-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第3章地震组合法-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地震 组合 课件
- 资源描述:
-
1、1第六章地震组合原理第六章地震组合原理当激发地震波时,既产生有效波,也产生干扰波,所当激发地震波时,既产生有效波,也产生干扰波,所记录的地震信息是在干扰的背景下记录的有效波。记录的地震信息是在干扰的背景下记录的有效波。为了提高地震勘探的精度,就要求突出有效波,压制为了提高地震勘探的精度,就要求突出有效波,压制干扰波,并努力把原来只起干扰作用的波转化为有用干扰波,并努力把原来只起干扰作用的波转化为有用信号。使地震资料更能真实地反映地下的地质情况。信号。使地震资料更能真实地反映地下的地质情况。地震地震组合法组合法就是利用干扰波与有效波就是利用干扰波与有效波在传播方向上在传播方向上的的不同不同而提出
2、的压制干扰波的而提出的压制干扰波的一种一种方法。方法。它主要用于压制面波之类低视速度的规则干扰及随机它主要用于压制面波之类低视速度的规则干扰及随机干扰。干扰。目前仍是野外工作的一种最基本的技术。目前仍是野外工作的一种最基本的技术。2地震组合原理地震组合原理组合组合 把多个检波器接收信号输入一个地震道或者用多个震把多个检波器接收信号输入一个地震道或者用多个震源同时激发构成一个总的震源,前者称为检波器组合,源同时激发构成一个总的震源,前者称为检波器组合,后者称为震源组合。后者称为震源组合。组合可以压制规则干扰,也可以压制随机干扰。组合可以压制规则干扰,也可以压制随机干扰。注意:注意:针对有效波和干
3、扰波的差异,有各种压制干扰波的针对有效波和干扰波的差异,有各种压制干扰波的方法,组合法是方法,组合法是利用干扰波与有效波利用干扰波与有效波在传播方向上在传播方向上的的不不同同而提出的压制干扰波的而提出的压制干扰波的一种一种方法。方法。3地震组合原理地震组合原理本章的主要内容:本章的主要内容:进一步了解干扰波的特征与有效波的差别;进一步了解干扰波的特征与有效波的差别;组合的原理、形式和基本概念;组合的原理、形式和基本概念;组合的方向特性;组合的方向特性;组合的统计特性;组合的统计特性;组合的频率特性。组合的频率特性。4图5第一节干扰波和组合概念第一节干扰波和组合概念 有效波有效波那些可用解决地质
4、问题的波。如反射波、那些可用解决地质问题的波。如反射波、折射波等。折射波等。干扰波干扰波是指妨碍追踪和识别有效波的波。如面波、是指妨碍追踪和识别有效波的波。如面波、多次反射波多次反射波。根据干扰波的特点分规则和不规则根据干扰波的特点分规则和不规则(随机随机)两大类干扰两大类干扰波。波。规则干扰规则干扰有一定主频和视速度的波,如面波、浅有一定主频和视速度的波,如面波、浅层折射波,侧面波;层折射波,侧面波;无一定的频率、无一定的视速度的干扰波,称不规则不规则干扰波干扰波或随机干扰随机干扰。如风吹草动;随机干扰也可能出现重复,如地表不均匀引起的散射。61 1、干扰波的特征、干扰波的特征要更好地压制干
5、扰波,首先应了解干扰波的特征。要更好地压制干扰波,首先应了解干扰波的特征。大量的地震勘探生产资料表明,有效波和干扰波的差别大量的地震勘探生产资料表明,有效波和干扰波的差别从下面几个方面来考虑:从下面几个方面来考虑:1 1)在传播方向上不同,即干扰波的最大真速度和有效波)在传播方向上不同,即干扰波的最大真速度和有效波的视速度范围不同。干扰波沿地表附近传播,有效波几的视速度范围不同。干扰波沿地表附近传播,有效波几乎是从地下垂直来到地面。也即视速度上有差别。乎是从地下垂直来到地面。也即视速度上有差别。2 2)在频谱上有差别。)在频谱上有差别。3 3)经过动校正后的剩余时差有差别。)经过动校正后的剩余
6、时差有差别。4 4)出现的传播规律可能有差别。)出现的传播规律可能有差别。7干扰波与有效波的干扰波与有效波的差别差别89几种主要的规则干扰波几种主要的规则干扰波(1 1)面波)面波 主要指沿地表传播的瑞利波,其特点为:频率低、主要指沿地表传播的瑞利波,其特点为:频率低、传播速度小,面波速度随频率的变化而变化即波散,传播速度小,面波速度随频率的变化而变化即波散,在地震记录上可看到面波干扰呈扫帚状展开,不同频在地震记录上可看到面波干扰呈扫帚状展开,不同频率的面波有不同的视速度,这就是面波分组的原因。率的面波有不同的视速度,这就是面波分组的原因。面波能量弱,衰减缓慢,时距曲线为直线,视速度与面波能量
7、弱,衰减缓慢,时距曲线为直线,视速度与真速度相等。真速度相等。(2 2)声波)声波 地震波激发时,在记录上都可观测到较强的声波,地震波激发时,在记录上都可观测到较强的声波,声波是一种在空气中传播的弹性纵波,速度稳定,为声波是一种在空气中传播的弹性纵波,速度稳定,为340m/s340m/s,频率较高,延续时间短,呈窄带状分布。,频率较高,延续时间短,呈窄带状分布。10规则干扰波记录规则干扰波记录11(3 3)浅层折射波)浅层折射波 当浅层存在有高速层,可以观测到直线同相轴的浅层当浅层存在有高速层,可以观测到直线同相轴的浅层折射波。折射波。(4 4)多次反射波)多次反射波 多次波和一次波的频谱、视
8、速度是相近的,多次波的多次波和一次波的频谱、视速度是相近的,多次波的能量取决于产生多次波界面的反射系数。多次波的传播能量取决于产生多次波界面的反射系数。多次波的传播速度,比同时到达的一次反射波的传播速度低,这是多速度,比同时到达的一次反射波的传播速度低,这是多次波和反射波的主要不同点。次波和反射波的主要不同点。(5 5)50Hz50Hz交流电干扰交流电干扰 特点是频率稳定,一般在特点是频率稳定,一般在50Hz50Hz左右。可采用陷波器滤左右。可采用陷波器滤掉。掉。122、组合法的形式、组合法的形式所谓组合法的形式,指用多个检波器组成一个地震道的所谓组合法的形式,指用多个检波器组成一个地震道的输
9、入或者采用多个震源同时激发构成一个总的震波,前输入或者采用多个震源同时激发构成一个总的震波,前者叫组合检波,后者叫组合爆炸,两者原理相同。者叫组合检波,后者叫组合爆炸,两者原理相同。组合法分为:组合法分为:1)野外检波器组合,即把安置在测线上一定距离的几个)野外检波器组合,即把安置在测线上一定距离的几个检波器所接收到的振动叠加起来作为一道地震信号。检波器所接收到的振动叠加起来作为一道地震信号。2)野外的震源组合,即在相隔一定距离的几个震点上同)野外的震源组合,即在相隔一定距离的几个震点上同时激发,总效应为一炮。时激发,总效应为一炮。3)室内混波,把若干个地震道信号按比例相加,作为)室内混波,把
10、若干个地震道信号按比例相加,作为一个新地震道。一个新地震道。133、组合原理、组合原理对一组检波器,一个垂直到达地表的波场,将同时影对一组检波器,一个垂直到达地表的波场,将同时影响组合内的每个检波器,它们会产生相干加强。如果响组合内的每个检波器,它们会产生相干加强。如果水平方向传播的波在不同的时间影响不同的检波器,水平方向传播的波在不同的时间影响不同的检波器,出现相消干涉。出现相消干涉。同样,从一组同时激发的震源产生的地震波垂直向下同样,从一组同时激发的震源产生的地震波垂直向下传播,当它们返回检波器时,信号也会得到加强,但传播,当它们返回检波器时,信号也会得到加强,但从震源组合产生的波如果水平
11、传播到一个检波器时,从震源组合产生的波如果水平传播到一个检波器时,这些波的相位不同,就会部分地相互抵消。这些波的相位不同,就会部分地相互抵消。14组合提供了区分不同方向传播的波的一种方法。如果组合提供了区分不同方向传播的波的一种方法。如果沿测线方向等间距布置各个检波器,则称为沿测线方向等间距布置各个检波器,则称为均匀组合均匀组合或或线性组合线性组合,如果检波器在一个面积内,则成为面积,如果检波器在一个面积内,则成为面积组合。组合。通常用组合通常用组合方向特性方向特性来说明组合的来说明组合的响应特性响应特性。15第二节组合的方向特性第二节组合的方向特性 1 1、检波器组合的方向特性、检波器组合的
12、方向特性假设沿测线布置假设沿测线布置n n个检波器,检波个检波器,检波器间距为器间距为xx,地震波是平面波,地震波是平面波,波前面与地面成波前面与地面成角,地震波速为角,地震波速为V V。则相邻两检波器的时差。则相邻两检波器的时差设第一个检波点的地震波形为设第一个检波点的地震波形为f(t)f(t),则各点接收到的波形依次为:则各点接收到的波形依次为:f(t-t)f(t-t),f(t-2t)f(t-2t),f f(t-t-(n-1n-1)tt)VxVBStsin216所谓所谓检波器检波器组合组合就是把这就是把这n n个检波器的输出信号叠加个检波器的输出信号叠加起来,作为一道的信号。起来,作为一道
13、的信号。下面讨论组合后下面讨论组合后总振动总振动的表达式,总振动与检波器个的表达式,总振动与检波器个数数n n、检波器间距、检波器间距x x和平面波波前与地面的夹角和平面波波前与地面的夹角等等参数之间有什么关系。参数之间有什么关系。具体思路要用到频谱分析理论,即分析叠加后波形的具体思路要用到频谱分析理论,即分析叠加后波形的频谱与组合前单个检波器接收到的信号频谱之间的差频谱与组合前单个检波器接收到的信号频谱之间的差别。别。则则n n个检波器的输出叠加起来,组合后输出波形为:个检波器的输出叠加起来,组合后输出波形为:)1()2()()()(tntfttfttftftF17则组合后输出波的频谱为:则
14、组合后输出波的频谱为:tjntjtjejgtntfejgttfejgttf)1(2)()1()()2()()(的谱是的谱是的谱是tjtnjtjntjtjntjeeeejKjKjgeejgjG11)1()()()()1)()()1()1(设设f(t)的谱是的谱是g(j),根据频谱定理中的时延定理有:,根据频谱定理中的时延定理有:K为等比级数18tjnjeejK11)(令 sincosieisincosiei由欧拉公式欧拉公式代入化简可得:则此式即为n个检波器线性组合的组合特性组合特性 tnjettnnjK212sin2sin)(19组合后信号的谱等于原来单个检波器接收信号的谱乘组合后信号的谱等于
15、原来单个检波器接收信号的谱乘上某个函数上某个函数K(j)。可以把组合看成一个线性系统,系统的特性为可以把组合看成一个线性系统,系统的特性为K(j)。组合后信号等于单个信号通过这个系统,特性被改造。组合后信号等于单个信号通过这个系统,特性被改造。K(j)即是频率即是频率的函数,也与方向的函数,也与方向tt有关有关,t,t的大的大小与波的入射方向有关。小与波的入射方向有关。)()()(jKjgjGtnjettnnjK212sin2sin)(20组合的振幅特性为 ttnB21sin21sin)(组合的相位特性为 tn)1(21)(2sin2sin)()(njKB21由此可以看出,由此可以看出,n n
16、个检波器组合后的总输出的振幅特性个检波器组合后的总输出的振幅特性和相位特性与和相位特性与和组内各检波器的相对时差和组内各检波器的相对时差tt有关。有关。即振幅特性、相位特性与频率有关。所以组合的方向即振幅特性、相位特性与频率有关。所以组合的方向效应相当于频率滤波。振幅特性和相位特性同时也与效应相当于频率滤波。振幅特性和相位特性同时也与tt有关。有关。式中式中*为视波长,为视波长,k k为波数,为波数,xx为组合点的距离。为组合点的距离。即振幅特性、相位特性与地震波的波数有关,相当于即振幅特性、相位特性与地震波的波数有关,相当于波数滤波。波数滤波。xkxvxTt2212*22我们知道只有速度才是
17、与时间和空间变量都相关的参我们知道只有速度才是与时间和空间变量都相关的参量,因此组合的方向效应实质上是一种视速度滤波。量,因此组合的方向效应实质上是一种视速度滤波。)2/(sin)2/(sin)(*vxvxnvB)2/sinsin()2/sinsin()(vxvxnBsin*vv 由上式可看出组合的振幅特性和地震波的入射角有关,由上式可看出组合的振幅特性和地震波的入射角有关,当当=0=0,反射波与地面垂直,反射波与地面垂直,B(0)=nB(0)=n,即总振幅增强,即总振幅增强了了n n倍,有效波得到加强,而对于其它角度则相对受到倍,有效波得到加强,而对于其它角度则相对受到压制。压制。Vxtsi
18、n23为了清楚地了解组合的相对加强和压制作用与波的入为了清楚地了解组合的相对加强和压制作用与波的入射角射角、检波器的数目、检波器的数目n n、检波器间距、检波器间距xx的关系,通的关系,通常用组合后的总振动的振幅与组合前的单个检波器的常用组合后的总振动的振幅与组合前的单个检波器的振幅的振幅的n n倍之比值:倍之比值:)2sinsin()2sinsin()(),(00vxnvxnnABAn 此式也表示一种组合特性,其本质上相当于作了归一此式也表示一种组合特性,其本质上相当于作了归一化处理。它表示对来自不同方向的波的相对加强或压化处理。它表示对来自不同方向的波的相对加强或压制效果,称为组合的制效果
19、,称为组合的方向特性。方向特性。)sin()sin(),(TtnTtnTtn 方向特性其它形式表示方向特性其它形式表示242、方向特性曲线、方向特性曲线通过通过讨论讨论下式下式函数的图形性质来说明组合的方向特性。函数的图形性质来说明组合的方向特性。ynynynsinsin),(1)极值点极值点当y=0时,(n,0)1取极大。y=0,即t/T 0当y=1,2,正整数时,为偶数为奇数,为奇数为偶数,都为奇数,或nynynyyn1,1),(为二次极大,如果波落入二次极大,也能得到加强。vxy2sin25(2)零值点零值点由公式可知0 y 1,要使(n,y)=0则必须使:0sin0sinynyn因此当
20、因此当 时,时,有零点,有零点,地震波进入地震波进入零零值区,就会受到最大的值区,就会受到最大的压制。压制。nnnny12,1),(yn26(3)通放带 7.0),(21,1),(,0ynnyyny时,当7.0),(yn21,0n 一般定义对某一波,若组合后的,则一般定义对某一波,若组合后的,则y的变化的变化范围就是通放带,可知通放带的区间为,为了使反范围就是通放带,可知通放带的区间为,为了使反 射波在组合后得到加强,必须保证反射波的组合参数射波在组合后得到加强,必须保证反射波的组合参数y位位于通放带内。于通放带内。(4)(4)压制区压制区 地震波进入零值区有最大的压制,为了使干扰波在组合地震
21、波进入零值区有最大的压制,为了使干扰波在组合后受到压制,必须使干扰波的组合参数后受到压制,必须使干扰波的组合参数y y满足:满足:nnyn11区间称为压制区。nnn1,127(5)(5)压制区极值压制区极值在压制区内也有极值,称为压制区极值。在在压制区内也有极值,称为压制区极值。在(0,l)(0,l)区间区间内,压制区极值有内,压制区极值有n-2n-2个,极值位置可解析式得出个,极值位置可解析式得出压制区内极值大小不等,以中心极值最小,当压制区内极值大小不等,以中心极值最小,当n n为奇数,为奇数,中心点为中心点为y=0.5y=0.5时,将时,将y y代人公式得:代人公式得:nnny27,25
22、,23nnnyynnn12sin2sin1sinsin1)21,(283 3、组合的方向性效应、组合的方向性效应为了估算组合对信噪比改善的程度,定义为了估算组合对信噪比改善的程度,定义组合的方向组合的方向性效应性效应为组合前的反射波与干扰波的振幅比与组合后为组合前的反射波与干扰波的振幅比与组合后的反射波与干扰波的振幅之比。的反射波与干扰波的振幅之比。设组合前反射波与干扰波的振幅比设组合前反射波与干扰波的振幅比 组合后的反射波与干扰波的振幅比组合后的反射波与干扰波的振幅比由此可得组合的方向性效应为由此可得组合的方向性效应为gffAAb),(),(ggyybynAynAb),(),(gyfbyny
23、nbbG29当干扰波进入压制带时,一般,故当干扰波进入压制带时,一般,故 若此时有效波落入通放带若此时有效波落入通放带 则有则有GnGn,即在,即在最有利的条件下,组合的方向性效应最有利的条件下,组合的方向性效应与组内的检波器的个数与组内的检波器的个数n n相等相等,检波器个数越多,信噪,检波器个数越多,信噪比的改善越大。比的改善越大。nyng1),(ynynynnGysinsin),(0yy1),(yyn304 4、线性组合的频率特性、线性组合的频率特性 上面讨论的组合方向特性是基于固定频率的平面简谐上面讨论的组合方向特性是基于固定频率的平面简谐波,对平面简谐波,组合前后频率不变,有效波到达
24、波,对平面简谐波,组合前后频率不变,有效波到达相邻检波器的时差为相邻检波器的时差为0 0。实际的地震波包含许多频率成分,频率不同,实际的地震波包含许多频率成分,频率不同,x/x/*也不同。有效波到达相邻检波器的时差可能很小,但也不同。有效波到达相邻检波器的时差可能很小,但不为不为0 0。组合后的波形有。组合后的波形有畸变畸变宽频波组合后的波形是否畸变,就需要考察组合的频宽频波组合后的波形是否畸变,就需要考察组合的频率特性。率特性。31分析这种畸变的基本思路是:把组合看作是一种滤波装分析这种畸变的基本思路是:把组合看作是一种滤波装置置(系统系统),把脉冲看作是许多不同频率的简谐波组成,把脉冲看作
25、是许多不同频率的简谐波组成,每种谐波在组合后的变化可以利用组合的方向频率特性每种谐波在组合后的变化可以利用组合的方向频率特性公式来计算,最后,把组合后的各种简谐波成分叠加起公式来计算,最后,把组合后的各种简谐波成分叠加起来,就可得到脉冲波组合的输出。把组合特性式改写为:来,就可得到脉冲波组合的输出。把组合特性式改写为:由公式可看出,组合后振幅随地震波的频率不同而变化,由公式可看出,组合后振幅随地震波的频率不同而变化,这就是组合的频率滤波特性。这就是组合的频率滤波特性。)sin()sin(),(tfntnfftn32如果固定组合数目如果固定组合数目n n,以,以(n,(n,t,f)t,f)为纵坐
展开阅读全文