书签 分享 收藏 举报 版权申诉 / 41
上传文档赚钱

类型运筹学存储论课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4606550
  • 上传时间:2022-12-24
  • 格式:PPT
  • 页数:41
  • 大小:182.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《运筹学存储论课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    运筹学 存储 课件
    资源描述:

    1、存 储 模 型-Inventory Models第一节第一节 有关存储论的基本概念有关存储论的基本概念一、存储的有关概念一、存储的有关概念(一)、存储(一)、存储 存储就是将一些物资(如原材料、外购零件、部件、在制品等等)存储起来以备将来的使用和消费;(二)、存储的作用(二)、存储的作用 存储是缓解供应与需求之间出现供不应求或供大于求等不协调情况的必要和有效的方法和措施。(三)存储问题(三)存储问题 首先,有存储就会有费用(占用资金、维护等费用存储费),且存储越多费用越大。存储费是企业流动资金中的主要部分。其次,若存储过少,就会造成供不应求,从而造成巨大的损失(失去销售机会、失去占领市场的机会

    2、、违约等)。因此,如何最合理、最经济的制定存储策略是企业经营管理中的一个大问题。二、存储模型中的几个要素二、存储模型中的几个要素(一)存储策略(一)存储策略(Inventory policy)存储策略存储策略解决存储问题的方法,即决定多少时间补充解决存储问题的方法,即决定多少时间补充一次以及补充多少数量的策略。常见的有以下几种类型:一次以及补充多少数量的策略。常见的有以下几种类型:1t0循环策略循环策略每隔每隔t0时间补充库存,补充量为时间补充库存,补充量为Q。这种。这种策略是在需求比较确定的情况下采用。策略是在需求比较确定的情况下采用。2(s,S)策略)策略当存储量为当存储量为s时,立即订货

    3、,订货量为时,立即订货,订货量为Q=Ss,即将库存量补充到,即将库存量补充到S。3(t,s,S)策略)策略每隔每隔t时间检查库存,当库存量小等时间检查库存,当库存量小等于于s时,立即补充库存量到时,立即补充库存量到S;当库存量大于;当库存量大于s时,可暂时时,可暂时不补充。不补充。(二)费用(二)费用1订货费订货费企业向外采购物资的费用,包括订购费和货物成本费。企业向外采购物资的费用,包括订购费和货物成本费。(1)订购费)订购费(ordering cost)手续费、电信往来费用、交通费等。与手续费、电信往来费用、交通费等。与订货次数有关;订货次数有关;(2)货物成本费)货物成本费与所订货物数量

    4、有关,如成本费、运输费等。与所订货物数量有关,如成本费、运输费等。2生产费生产费企业自行生产库存品的费用,包括装备费和消耗性费用。企业自行生产库存品的费用,包括装备费和消耗性费用。(1)装备费)装备费(setup cost)与生产次数有关的固定费用;与生产次数有关的固定费用;(2)消耗性费用)消耗性费用与生产数量有关的费用。与生产数量有关的费用。对于同一产品,订货费与生产费只有一种。对于同一产品,订货费与生产费只有一种。3存储费用存储费用(holding cost)保管费、流动资金占用利息、货损费等,与存保管费、流动资金占用利息、货损费等,与存储数量及存货性质有关。储数量及存货性质有关。4缺货

    5、费缺货费(backorder cost)因缺货而造成的损失,如:机会损失、停工待因缺货而造成的损失,如:机会损失、停工待料损失、未完成合同赔偿等。料损失、未完成合同赔偿等。(三)提前时间(三)提前时间 (lead time)通常从订货到货物进库有一段时间,为了及时补充库存,通常从订货到货物进库有一段时间,为了及时补充库存,一般要提前订货,该提前时间等于订货到货物进库的时间一般要提前订货,该提前时间等于订货到货物进库的时间长度。长度。(四)目标函数(四)目标函数 要在一类策略中选择最优策略,就需要有一个赖以衡量优要在一类策略中选择最优策略,就需要有一个赖以衡量优劣的准绳,这就是目标函数。劣的准绳

    6、,这就是目标函数。在存储论模型中,在存储论模型中,目标函数目标函数平均费用函数或平均利润平均费用函数或平均利润函数。最优策略就是使平均费用函数最小或使平均利润函函数。最优策略就是使平均费用函数最小或使平均利润函数最大的策略。数最大的策略。(五)求解存储问题的一般方法(五)求解存储问题的一般方法(1)分析问题的供需特性;)分析问题的供需特性;(2)分析系统的费用(订货费、存储费、缺货费、生产费等);)分析系统的费用(订货费、存储费、缺货费、生产费等);(3)确定问题的存储策略,建立问题的数学模型;)确定问题的存储策略,建立问题的数学模型;(4)求使平均费用最小(或平均利润最大)的存储策略(最优)

    7、求使平均费用最小(或平均利润最大)的存储策略(最优存储量、最佳补充时间、最优订货量等)存储量、最佳补充时间、最优订货量等)第二节第二节 经济订购批量存储模型经济订购批量存储模型 Economic Ordering Quantity(EOQ)Model一、模型假设一、模型假设(1)需求是连续均匀的。设需求速度为常数)需求是连续均匀的。设需求速度为常数R;(2)当存储量降至零时,可立即补充,不会造成损失;)当存储量降至零时,可立即补充,不会造成损失;(3)每次订购费为)每次订购费为c3,单位存储费为,单位存储费为c1,且都为常数;,且都为常数;二、存储状态图二、存储状态图存储量存储量时间时间TQ斜

    8、率斜率Rt0.5Q三、存储模型三、存储模型(一)存储策略(一)存储策略 该问题的存储策略就是每次订购量,即问题的决策变量Q,由于问题是需求连续均匀且不允许缺货,变量Q可以转化为变量t,即每隔t时间订购一次,订购量为Q=Rt。(二)优化准则(二)优化准则 t时间内平均费用最小。由于问题是线性的,因此,t时间内平均费用最小,总体平均费用就会最小。(三)目标函数(三)目标函数根据优化准则和存储策略,该问题的目标函数就是根据优化准则和存储策略,该问题的目标函数就是t时间内时间内的平均费用,的平均费用,即即 C=C(t););(1)t时间内订货费时间内订货费t时间内订货费时间内订货费=订购费订购费+货物

    9、成本费货物成本费=c3+KRt (其中(其中K为货物单价)为货物单价)(2)t时间内存储费时间内存储费存储费存储费=平均存储量平均存储量单位存储费单位存储费时间时间 =(1/2)Qc1t=(1/2)c1Rt2(3)t时间内平均费用(目标函数)时间内平均费用(目标函数)C(t)=(1/2)c1Rt2+c3+KRt/t =(1/2)c1Rt+c3/t+KR(四)最优存储策略(四)最优存储策略在上述目标函数中,在上述目标函数中,令令 dc/dt=0得得 即每隔即每隔t*时间订货一次,可使平均费用最小。时间订货一次,可使平均费用最小。有有即当库存为零时,立即订货,订货量为即当库存为零时,立即订货,订货

    10、量为Q*,可使平均费用最小。,可使平均费用最小。Q*经济订货批量(经济订货批量(Economic Ordering Quantity,E.O.Q)Rcct13*213*2cRcRtQ(五)平均费用分析(五)平均费用分析由于货物单价由于货物单价K与与Q*、t*无关,因此在费用函数中可省去该项。无关,因此在费用函数中可省去该项。即即 C(t)=(1/2)c1Rt+c3/t C(t)=C(t)(1/2)c1Rt:存储费用曲线:存储费用曲线c3/t:订购费用曲线:订购费用曲线tt*C图图72O132c c R 某商品单位成本为5元,每天保管费为成本的0.1%,每次订购费为10元。已知该商品的需求是10

    11、0件天,不允许缺货。假设商品的进货可以随时实现,问怎样组织进货才最经济 C1=5*0.1%=0.005 C3=10 K=5 R=100 t*=(2C3/C1R)1/2=6.32 Q*=Rt*=100*6.32=632 C*=(2C3C1R)1/2=3.16(元/天)四、实例分析四、实例分析 教材P176实例 某批发公司向附近某批发公司向附近200多家食品零售店提供货源,批发公司负责人多家食品零售店提供货源,批发公司负责人为减少存储费用,选择了某种品牌的方便面进行调查研究,以制为减少存储费用,选择了某种品牌的方便面进行调查研究,以制定正确的存储策略。调查结果如下:(定正确的存储策略。调查结果如下

    12、:(1)方便面每周需求)方便面每周需求3000箱;箱;(2)每箱方便面一年的存储费为)每箱方便面一年的存储费为6元,其中包括贷款利息元,其中包括贷款利息3.6元,元,仓库费用、保险费用、损耗费用管理费用等仓库费用、保险费用、损耗费用管理费用等2.4元。(元。(3)每次订)每次订货费货费25元,其中包括:批发公司支付采购人员劳务费元,其中包括:批发公司支付采购人员劳务费12元,支付元,支付手续费、电话费、交通费等手续费、电话费、交通费等13元。(元。(4)方便面每箱价格)方便面每箱价格30元。元。解:解:(1)人工计算)人工计算 c1=6/52=0.1154元元周周箱;箱;c3=25元元次;次;

    13、R=3000R=3000箱箱周。周。因此有因此有 (箱)(箱)t*=Q*R=1140.183000=0.38(周)(周)=2.66(天)(天)最小费用最小费用 18.11401154.03000252213*cRcQ周)元/(57.1313000251154.02231*Rccc 在此基础上,公司根据具体情况对存储策略进行了一些修改:在此基础上,公司根据具体情况对存储策略进行了一些修改:(1)将订货周期该为)将订货周期该为3天,每次订货量为天,每次订货量为33000(52365)=1282箱;箱;(2)为防止每周需求超过)为防止每周需求超过3000箱的情况,决定每天多存储箱的情况,决定每天多存

    14、储200箱,箱,这样,第一次订货为这样,第一次订货为1482箱,以后每箱,以后每3天订货天订货1282箱;箱;(3)为保证第二天能及时到货,应提前一天订货,再订货点为)为保证第二天能及时到货,应提前一天订货,再订货点为427+200=627箱。箱。这样,公司一年总费用为:这样,公司一年总费用为:C=0.512826+(3653)25+2006=8087.67元元 数据模型与决策中符号数据模型与决策中符号 年需求量年需求量D;每次订购费为每次订购费为C0,年年单位存储费为单位存储费为Ch,且都为常数;,且都为常数;年年费用函数费用函数 C(Q)=(1/2)ChQ+C0D/Q 经济订购批量模型经济

    15、订购批量模型 每天的需求量每天的需求量:d=D/250 or d=D/365 提前时间提前时间:m 再定货点再定货点:r=md 循环周期循环周期:T=250/(D/Q*)or T=365/(D/Q*)hCDCQ0*2模型三模型三 经济生产批量模型经济生产批量模型 -Economic Production Lot Size Model 经济生产批量模型也称不允许缺货、生产需要一定时间模型。经济生产批量模型也称不允许缺货、生产需要一定时间模型。一、模型假设(1)需求是连续均匀的。设需求速度为常数)需求是连续均匀的。设需求速度为常数R;(2)每次生产准备费为)每次生产准备费为c3,单位存储费为,单位

    16、存储费为c1,且都为常数;,且都为常数;(3)当存储量降至零时开始生产,单位时间生产量(生产率)当存储量降至零时开始生产,单位时间生产量(生产率)为为P(常数),生产的产品一部分满足当时的需要,剩余部(常数),生产的产品一部分满足当时的需要,剩余部分作为存储,存储量以分作为存储,存储量以PR的速度增加;当生产的速度增加;当生产t时间以后,时间以后,停止生产,此时存储量为停止生产,此时存储量为(PR)t,以该存储量来满足需,以该存储量来满足需求。当存储量降至零时,再开始生产,开始一个新的周期。求。当存储量降至零时,再开始生产,开始一个新的周期。二、存储状态图二、存储状态图 设最大存储量为S;总周

    17、期时间为T,其中生产时间为t,不生产时间为t1;存储状态图如下图。S时间时间T0.5S存储量存储量tt1斜率斜率PR斜率斜率R三、存储模型三、存储模型1存储策略:存储策略:一次生产的生产量一次生产的生产量Q,即问题的决策变量;,即问题的决策变量;2优化准则优化准则:t+t1时期内,平均费用最小;时期内,平均费用最小;3费用函数费用函数:(1)生产时间)生产时间 t=QPP;(2)最大存储量)最大存储量 S=(PR)t=(PR)Q/P(3)不生产时间与总时间:)不生产时间与总时间:t1=SR=(PR)Q(PR)t+t1=QP+(PR)Q(PR)=QR(4)t+t1时期内平均存储费:时期内平均存储

    18、费:0.5S c1 =0.5 c1(PR)QP(5)t+t1时期内平均生产费用:时期内平均生产费用:c3(t+t1)=c3RQ(6)t+t1时期内总平均费用:时期内总平均费用:C=0.5 c1(PR)QP+c3RQ4最优存储策略最优存储策略在上述费用函数的基础上:在上述费用函数的基础上:令令 dc/dQ=0有最佳生产量有最佳生产量 最佳生产时间最佳生产时间 最佳循环时间最佳循环时间 循环周期内平均费用循环周期内平均费用 上述各参数的单位均以上述各参数的单位均以c1的单位为参照的单位为参照)(12/13*RPPcRcPQtRPPcRcQ13*2RPPRccRQT13*2/PRPRccC312 某

    19、商店经销某商品某商店经销某商品,月需求量为月需求量为30件件,需求速度为常数需求速度为常数,该商该商品每件进价品每件进价300元元,月存储费用为进价的月存储费用为进价的2%.将工厂将工厂,向工厂向工厂订购该产品是订购费每次订购该产品是订购费每次20元元,订购后到货的速度为常数订购后到货的速度为常数,即即2件件/天天.求最优存储策略求最优存储策略 P=2*30=60件件/月月 R=30件件/月月 K=300 C1=300*2%=6元元/月月 C3=20元元 =20,每次订货,每次订货20件件 T*=Q*/R=20/30=2/3月月 C=30元元*312()c RPQc PR1 3()2cc R

    20、PRP模型四模型四 允许缺货的经济订购批量模型允许缺货的经济订购批量模型 -An Inventory Model with Planned Shortage 所谓允许缺货是指企业可以在存储降至零后,还可以在等待一所谓允许缺货是指企业可以在存储降至零后,还可以在等待一段时间后订货。段时间后订货。若企业除了支付少量的缺货损失外无其他损失,从经济的角度若企业除了支付少量的缺货损失外无其他损失,从经济的角度出发,允许缺货对企业是有利的。出发,允许缺货对企业是有利的。一、模型假设一、模型假设(1)顾客遇到缺货时不受损失或损失很小,)顾客遇到缺货时不受损失或损失很小,顾客会耐心等待直到顾客会耐心等待直到新

    21、的补充到来新的补充到来。当新的补充一到,立即将货物交付给顾客。这。当新的补充一到,立即将货物交付给顾客。这是允许缺货的基本假设,即缺货不会造成机会损失。是允许缺货的基本假设,即缺货不会造成机会损失。(2)需求是连续均匀的。设需求速度为常数)需求是连续均匀的。设需求速度为常数R;(3)每次订购费为)每次订购费为c3,单位存储费为,单位存储费为c1,单位缺货费为,单位缺货费为c2,且都为,且都为常数;常数;二、存储状态图二、存储状态图 设最大存储量为S,则最大缺货量为QS,每次订到货后立即支付给顾客最大缺货量QS;总周期时间为T,其中不缺货时间为t1,缺货时间为t2;存储状态图如下图。存储量存储量

    22、t1t2时间时间TQSSTO三、存储模型三、存储模型1存储策略:一次生产的生产量存储策略:一次生产的生产量Q,即问题的决策变量;,即问题的决策变量;2优化准则:优化准则:T时期内,平均费用最小;时期内,平均费用最小;3费用函数:费用函数:(1)不缺货时间)不缺货时间 t1=SRR;(2)缺货时间)缺货时间 t2=(QS)R R(3)总周期时间)总周期时间 T=QRR(4 4)平均存储量)平均存储量 0.5St1T=0.5S2Q(5)平均缺货量)平均缺货量 0.5(QS)t2T =0.5(QS)2 Q(6)T时期内平均存储费:时期内平均存储费:0.5c1S2Q(7)T时期内平均缺货费:时期内平均

    23、缺货费:0.5c2(QS)2Q(5)T时期内平均订购费用:时期内平均订购费用:c3 T=c3RQ(6)T时期内总平均费用:时期内总平均费用:C(S,Q)=0.5c1S2Q+0.5c2(QS)2Q+c3RQ4最优存储策略最优存储策略令令 有最佳订购量有最佳订购量 最佳(最大)存储量最佳(最大)存储量 最佳循环时间最佳循环时间 周期内平均费用周期内平均费用 0)(21QSQcQScSC02)()(22232222221QRcQSQcSQQcQScQC22113*2ccccRcQ21213*2ccccRcS22113*2/cccRccRQT21231*2cccRccC 工厂每周需要零配件32箱,存储

    24、费每箱每周1元,每次订购费25元,缺货费0.5元/天,求最优存储策略 C1=1 C2=0.5*7=3.5 C3=25 Q*=45.35 S*=35.28 T*=Q*/R=1.42模型二模型二 允许缺货的经济生产批量模型允许缺货的经济生产批量模型 允许缺货,补充不是靠订货,而是靠生产。允许缺货,补充不是靠订货,而是靠生产。一、模型假设一、模型假设(1)需求是连续均匀的。设需求速度为常数)需求是连续均匀的。设需求速度为常数R;(2)每次生产准备费为)每次生产准备费为c3,单位存储费为,单位存储费为c1,单位缺货费为,单位缺货费为c2,且都为常数;且都为常数;(3)当缺货一段时间后时开始生产,单位时

    25、间生产量(生产)当缺货一段时间后时开始生产,单位时间生产量(生产率)为率)为P(常数),生产的产品一部分满足当时的需要,剩(常数),生产的产品一部分满足当时的需要,剩余部分作为存储,存储量以余部分作为存储,存储量以PR的速度增加;停止生产时,的速度增加;停止生产时,以存储量来满足需求。以存储量来满足需求。二、存储状态图二、存储状态图 设最大存储量为设最大存储量为S,则最大缺货量为,则最大缺货量为H;总周期时间为;总周期时间为T,其,其中存储时间(不缺货时间)为中存储时间(不缺货时间)为t1,缺货时间为,缺货时间为t2。存储状态图。存储状态图如下图。如下图。存储量存储量时间时间TTHt1t2S三

    26、、存储模型三、存储模型1存储策略存储策略:一次生产的生产量:一次生产的生产量Q,即问题的决策变量;,即问题的决策变量;2优化准则:优化准则:T时期内,平均费用最小;时期内,平均费用最小;3费用函数费用函数:(1)不缺货时间)不缺货时间:包括两部分,一部分是存储增加的时间,另:包括两部分,一部分是存储增加的时间,另一部分是存储减少的时间,因此有:一部分是存储减少的时间,因此有:(2)缺货时间:)缺货时间:也包括两部分,一部分是缺货增加的时间,另也包括两部分,一部分是缺货增加的时间,另一部分是缺货减少的时间,所以有:一部分是缺货减少的时间,所以有:(3)总周期时间)总周期时间:等于存储时间与缺货时

    27、间之和,即:等于存储时间与缺货时间之和,即:RRPPSRSRPSt)(1RRPPHRPHRHt)(2RRPHSPRRPPHRRPPSttT)()()()(21(4 4)平均存储量)平均存储量(5)平均缺货量)平均缺货量 (6)T时期内平均存储费时期内平均存储费 (7)T时期内总平均费用,即费用函数:时期内总平均费用,即费用函数:)(22121HSSTtS)(22122HSHTtHPRPHSRcTc)(33PRPHSRcHSHcHSScHSC)()(2)(2),(322214最优存储策略最优存储策略令令 0SC0HC最大缺货量最大缺货量最佳(最大)存储量最佳(最大)存储量 有最佳订购量有最佳订购

    28、量 即即最佳循环时间最佳循环时间 周期内平均费用周期内平均费用 RPPccccRcQ22113*2PRPccccRcS21213*2RPPcccRccRQT22113*2/PRPcccRccC21231*2PRPccccRcH21123*2RPPHSQ)(*企业生产某种产品,正常生产条件下可生产10件/天.根据合同,需按7件/天供货.存储费每件0.13元/天,缺货费每件0.5元/天,每次生产准备费80元,求最优存储策略 P=10件/天 R=7件/天 C1=0.13元/件天 C2=0.5 C3=80*312122193.2c Rc cPQccP R第七节第七节 需求为随机的单一周期模型需求为随机

    29、的单一周期模型 -A Single-Period Inventory Model with Probabilistic Demand 通常情况下,需求是一个随机变量。通常情况下,需求是一个随机变量。所谓需求是随机变量的所谓需求是随机变量的单一周期存储问题是单一周期存储问题是指,某种商品指,某种商品的市场需求是随机变量,其分布为已知。这类商品或更新的市场需求是随机变量,其分布为已知。这类商品或更新快或不能长期保存,他们在某段时间内只能进货一次,期快或不能长期保存,他们在某段时间内只能进货一次,期末未售出商品降价处理或完全损失掉(末未售出商品降价处理或完全损失掉(如季节性服装、贺如季节性服装、贺年

    30、卡、食品、报纸等)年卡、食品、报纸等)。这类问题中,如订货量过大会使商品不能完全售出而增加这类问题中,如订货量过大会使商品不能完全售出而增加损失,若订货量过小,会因供不应求而造成机会损失。损失,若订货量过小,会因供不应求而造成机会损失。一、需求为离散随机变量情况下的模型一、需求为离散随机变量情况下的模型(一)报童问题(一)报童问题 报童每天销售的报纸数量是个随机变量,每出售一份报纸赚k元,若当天报纸未售出则每份赔h元。根据以往经验,每天报纸的需求量为r的概率为P(r),问报童每天最好准备多少报纸?(二)最优订购量模型(二)最优订购量模型 设报童每天订设报童每天订Q份报纸份报纸 当当 Qr 时,

    31、报童损失:时,报童损失:h(Qr)元元 当当 Q r 时,报童机会成本时,报童机会成本:k(rQ)元元 由于由于r是离散的,故报童订是离散的,故报童订Q份报纸的期望损失为:份报纸的期望损失为:使期望损失最小的最佳订购量使期望损失最小的最佳订购量 Q*必满足如下两个条件:必满足如下两个条件:(1)C(Q*)C(Q*+1)(2)C(Q*)C(Q*1)10)()()()()(QrQrrPQrkrPrQhQC 由(由(1)有:)有:由(由(2)有)有 因此,最优订购量因此,最优订购量Q*应满足下列不等式:应满足下列不等式:hkkrPQr*0)(hkkrPQr10*)(*010)()(QrQrrPhkk

    32、rP(三)应用举例(三)应用举例 某报亭出售某种报纸,其需求量在某报亭出售某种报纸,其需求量在5百至百至1千份之千份之间,需求的概率分布如下表。又已知该报纸每售间,需求的概率分布如下表。又已知该报纸每售出一百份利润出一百份利润22元,每积压一百份损失元,每积压一百份损失20元,问元,问报亭每天应订购多少份这种报纸,利润最大。报亭每天应订购多少份这种报纸,利润最大。需求数需求数(百份)(百份)5678910概率概率0.060.10.230.310.220.08累计概率累计概率0.060.160.390.700.921解:解:由题意有:由题意有:k=22、h=20所以所以 由表中累计概率可知:由表

    33、中累计概率可知:故,报亭每天订购该种报纸的份数应在故,报亭每天订购该种报纸的份数应在700份到份到800份之间。份之间。5238.0202222hkk708070.0)(5238.039.0)(rrrPrP二、需求为连续随机变量情况下的模型二、需求为连续随机变量情况下的模型(一)问题描述(一)问题描述 某商品单位成本为某商品单位成本为k,单位售价为,单位售价为P,单位存储费,单位存储费为为c1,需求,需求r是连续的随机变量,密度函数为是连续的随机变量,密度函数为(r),其分布函数为),其分布函数为 ,生产,生产或订购数量为或订购数量为Q,问如何确定,问如何确定Q,使利润期望值最,使利润期望值最大?大?adrraF0)()(

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:运筹学存储论课件.ppt
    链接地址:https://www.163wenku.com/p-4606550.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库