集成电路的制造工艺课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《集成电路的制造工艺课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集成电路 制造 工艺 课件
- 资源描述:
-
1、第一节第一节 双极型集成电路的工艺流程双极型集成电路的工艺流程 P PN结隔离方法制造双极型集成电路的典型工艺流程。结隔离方法制造双极型集成电路的典型工艺流程。图图1 第二节第二节 MOS集成电路的工艺流程集成电路的工艺流程 N沟道铝栅沟道铝栅NMOS晶体管的制造工艺流程晶体管的制造工艺流程 图图1 CMOS集成电路工艺流程集成电路工艺流程 CMOS反相器反相器 图图2CMOS主要工艺流程图主要工艺流程图 图图3第三节第三节 外延工艺外延工艺 外延技术的采用主要有以下优点:外延技术的采用主要有以下优点:利用外延技术可以提高高频大功率晶体管的频率和功率特性。利用外延技术可以提高高频大功率晶体管的
2、频率和功率特性。在双极型集成电路的制造工艺中,采用外延技术容易实现隔离在双极型集成电路的制造工艺中,采用外延技术容易实现隔离 。利用外延技术可以根据需要方便地控制薄层单晶的电阻率、电导类利用外延技术可以根据需要方便地控制薄层单晶的电阻率、电导类型、厚度及杂质分布等参数。增大了工艺设计和器件制造的灵活性。型、厚度及杂质分布等参数。增大了工艺设计和器件制造的灵活性。外延生长的方法和原理外延生长的方法和原理(1)汽相外延生长的设备汽相外延生长的设备 图图(2)汽相外延生长的方法汽相外延生长的方法(3)汽相外延生长原理汽相外延生长原理(4)其他外延技术其他外延技术 液相外延:液相外延是一种在溶液中生长
3、晶体的方法。液相外延的液相外延:液相外延是一种在溶液中生长晶体的方法。液相外延的优点是可以得到高纯度的外延层。优点是可以得到高纯度的外延层。分子束外延:分子束外延实际上是一种直接淀积技术。分子束外延:分子束外延实际上是一种直接淀积技术。分子束外延分子束外延的优点是:能精确控制外延层的化学配比,杂质分布和外延的优点是:能精确控制外延层的化学配比,杂质分布和外延层层厚度。厚度。第四节第四节 氧化工艺氧化工艺 1 1 二氧化硅的性质及其作用二氧化硅的性质及其作用(1)(1)二氧化硅的性质二氧化硅的性质 二氧化硅是理想的电绝缘材料,实验表明,二氧化硅在室温附近二氧化硅是理想的电绝缘材料,实验表明,二氧
4、化硅在室温附近相当宽的温度范围内性能稳定,电阻率很高。相当宽的温度范围内性能稳定,电阻率很高。二氧化硅的化学特性非常稳定,二氧化硅的化学特性非常稳定,实验证明某些杂质在二氧化硅中的扩散系数比在实验证明某些杂质在二氧化硅中的扩散系数比在SiSi中的要小,因中的要小,因而可以用二氧化硅膜作扩散的掩蔽层。而可以用二氧化硅膜作扩散的掩蔽层。二氧化硅的电容性能是用介电常数表征的二氧化硅的电容性能是用介电常数表征的 。(2)(2)二氧化硅膜的作用二氧化硅膜的作用 在在MOSMOS集成电路中,二氧化硅层用做集成电路中,二氧化硅层用做MOSFETMOSFET的绝缘栅介质的绝缘栅介质 二氧化硅层可以用做掺杂时的
5、掩蔽层二氧化硅层可以用做掺杂时的掩蔽层 .可以作为注入离子的阻挡层。可以作为注入离子的阻挡层。二氧化硅膜对器件表面有保护和钝化作用二氧化硅膜对器件表面有保护和钝化作用 二氧化硅膜用做制作电容器的介质材料。二氧化硅膜用做制作电容器的介质材料。二氧化硅膜用于集成电路中的隔离介质和电绝缘介质二氧化硅膜用于集成电路中的隔离介质和电绝缘介质 2 2 二氧化硅层的热生长机理二氧化硅层的热生长机理 干氧氧化法。干氧氧化的氧化层生长机理是:处在高温状态的氧分子干氧氧化法。干氧氧化的氧化层生长机理是:处在高温状态的氧分子与硅片表面的硅原子接触产生化学反应在硅表面形成二氧化硅层与硅片表面的硅原子接触产生化学反应在
6、硅表面形成二氧化硅层 硅的水汽氧化。硅的水汽氧化生长氧化层的机理是:高温下,水蒸气硅的水汽氧化。硅的水汽氧化生长氧化层的机理是:高温下,水蒸气与硅材料表面接触时,水分子与硅材料表面的硅原子发生反应生成二氧与硅材料表面接触时,水分子与硅材料表面的硅原子发生反应生成二氧化硅层,化硅层,湿氧氧化湿氧氧化 在实际的生产中,广泛采用的氧化方式是:干氧在实际的生产中,广泛采用的氧化方式是:干氧湿氧湿氧干氧的交替干氧的交替氧化生长二氧化硅的方式氧化生长二氧化硅的方式 3 3 二氧化硅膜的制备方法二氧化硅膜的制备方法 图图此外还有氢氧合成氧化及高压氧化等制备二氧化硅膜的方法。此外还有氢氧合成氧化及高压氧化等制
7、备二氧化硅膜的方法。第五节第五节 化学汽相淀积化学汽相淀积(CVD)(CVD)方法方法 化学汽相淀积指的是通过气态物质的化学反应在衬底上淀积一层薄膜化学汽相淀积指的是通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程。材料的过程。化学汽相淀积技术特点是:淀积温度低,淀积薄膜的成分和厚度容易化学汽相淀积技术特点是:淀积温度低,淀积薄膜的成分和厚度容易控制,均匀性和重复性好,适用范围宽,设备简单等诸多优点。控制,均匀性和重复性好,适用范围宽,设备简单等诸多优点。1 1 化学汽相淀积二氧化硅膜化学汽相淀积二氧化硅膜 低温低温 高温高温 2 2 多晶硅膜的制备多晶硅膜的制备3 3 氮化硅膜的制备氮化
8、硅膜的制备常用的方法是化学汽相淀积法。多用等离子体化学汽相淀积(常用的方法是化学汽相淀积法。多用等离子体化学汽相淀积(PECVDPECVD)方法。方法。第六节第六节 掺杂技术掺杂技术 掺杂是指将需要的杂质掺入到半导体特定的区域中的技术。目的是:掺杂是指将需要的杂质掺入到半导体特定的区域中的技术。目的是:改变半导体的电学性质,制造改变半导体的电学性质,制造PNPN结二极管、结二极管、NPNNPN和和PNPPNP晶体管、电阻晶体管、电阻器等。在集成电路生产中扩散和离子注入掺杂是常用的两种掺杂技器等。在集成电路生产中扩散和离子注入掺杂是常用的两种掺杂技术。术。1 1 扩散原理扩散原理(1)(1)扩散
9、的本质与扩散方法扩散的本质与扩散方法 在集成电路工艺中的扩散指的是在一定温度下,在集成电路工艺中的扩散指的是在一定温度下,族元素硼(族元素硼(B B)或或V V族元素磷(族元素磷(P P)、砷()、砷(ASAS)等原子能够克服阻力进入半导体(硅)等原子能够克服阻力进入半导体(硅)中并缓慢地移动。中并缓慢地移动。进入半导体中的杂质原子有替位式扩散和间隙式扩散两种方式。进入半导体中的杂质原子有替位式扩散和间隙式扩散两种方式。(2)(2)两种表面源的扩散方程的解两种表面源的扩散方程的解 图图1 1 图图2 2(3)(3)扩散工艺的主要参数扩散工艺的主要参数 薄层电阻。薄层电阻。图图3 3 图图4 4
10、 PN PN结结深结结深Xj Xj 磨角法磨角法 Xj=dsin Xj=dsin 图图滚槽法滚槽法 Xj=ab/2R Xj=ab/2R 图图(4)(4)杂质的横向扩散杂质的横向扩散在大规模集成电路制造工艺中应减小或避免杂质的横向扩散在大规模集成电路制造工艺中应减小或避免杂质的横向扩散 图图 tWLtRQqRS1ICURS2 2 扩散工艺扩散工艺固态源扩散装置固态源扩散装置 图图工艺过程为:先是固态氮化硼源的活化工艺过程为:先是固态氮化硼源的活化,活化后的氮化硼源与硅片活化后的氮化硼源与硅片间隔等距离立放在反应室内,加热到间隔等距离立放在反应室内,加热到960960扩散扩散,将预淀积后的硅将预淀
展开阅读全文