初中数学中考规律探究问题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中数学中考规律探究问题课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 中考 规律 探究 问题 课件 下载 _中考其它_中考复习_数学_初中
- 资源描述:
-
1、12/24/20221 规律探索试题是中考中的一棵常青树,一直受到命题者的青睐,主要原因是这类试题没有固定的形式和方法,要求学生通过观察、分析、比较、概括、推理、判断等探索活动来解决问题12/24/202221 1数式规律数式规律例1:(2009 (2009 湖北十堰湖北十堰)观察下面两行数:2,4,8,16,32,64,5,7,11,19,35,67,根据你发现的规律,取每行数的第10个数,求得它们的和是(写出最后的结果写出最后的结果)1021024分析:分析:第一行的第10个数是 ,第二行的每个数总比第一行同一位置上的数大每个数总比第一行同一位置上的数大3 3,所以第,所以第二行的第二行的
2、第1010个数是个数是1024+3=1027.1024+3=1027.2051归纳与猜想归纳与猜想12/24/202231 1数式规律数式规律例2:(2009(2009北京北京)一组按规律排列的式子:(ab0),其中第7个式子是 ,第n个式子是 (n为正整数)25811234,bbbbaaaa 本题难点是,变化的部分太多,有三处发生变化:分子、分母、分式的符号。学生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点.归纳与猜想归纳与猜想12/24/202241 1数式规律数式规律例3:(09年陕西)观察下列各式:13=1221;24=2222;35=3223;
3、请你将猜想到的规律用正整数n 表示出来:_.1n 方法总结:横向熟悉代数式、算式的结构;纵向观察、对比,研究各式之间的关系,寻求变化规律;按要求写出算式或结果。归纳与猜想归纳与猜想12/24/202252 2图形规律图形规律例例4 4:(20082008黑龙江哈尔滨黑龙江哈尔滨)观察下列图形:观察下列图形:它们是按一定规律排列的,依照此规律,第它们是按一定规律排列的,依照此规律,第2020个图形共有个图形共有 个个三角形每条边上的星数相同,再减去三个顶点的数方法一方法一:3(n+1)-3=3n:3(n+1)-3=3n3n归纳与猜想归纳与猜想12/24/202262 2图形规律图形规律例例4 4
4、:(20082008黑龙江哈尔滨黑龙江哈尔滨)观察下列图形:观察下列图形:它们是按一定规律排列的,依照此规律,第它们是按一定规律排列的,依照此规律,第2020个图形共有个图形共有 个个3 36 69 912123n归纳与猜想归纳与猜想12/24/202272 2图形规律图形规律例例5 5(20092009海南省)用同样大小的黑色棋子按图所示海南省)用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第的方式摆图形,按照这样的规律摆下去,则第n n个图个图形需棋子形需棋子 枚(用含枚(用含n n的代数式表示)的代数式表示).第1个图第2个图第3个图方法一方法一:除第一个图形有除第一
5、个图形有4 4枚棋子外枚棋子外,每多一个图形每多一个图形,多多3 3枚棋子枚棋子.4 43 3(n n1 1)=3=3 n+1+1归纳与猜想归纳与猜想12/24/202282 2图形规律图形规律例例5 5(20092009海南省)用同样大小的黑色棋子按图所示海南省)用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第的方式摆图形,按照这样的规律摆下去,则第n n个图个图形需棋子形需棋子 枚(用含枚(用含n n的代数式表示)的代数式表示).第1个图第2个图第3个图3n+1方法二方法二:每个图形每个图形,可看成是序列数与可看成是序列数与3 3的倍数的倍数 又多又多1 1枚棋子枚棋子
展开阅读全文