立体几何中的向量方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《立体几何中的向量方法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 中的 向量 方法 课件
- 资源描述:
-
1、真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考 第第2讲立体几何中的向量方法讲立体几何中的向量方法 真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考 高考定位以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对
2、接高考接高考 真题感悟(2019新课标全国卷)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,ABB1C.(1)证明:ACAB1;(2)若ACAB1,CBB160,ABBC,求二面角AA1B1C1的余弦值真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考(1)证明连接BC1,交B1C于点O,连接AO.因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点 又ABB1C,ABBOB,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1OCO,故ACAB1.真题感悟真题感悟考点考点整
3、合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考科目1考试网 km1ks/科目1考试科目1考试网 km1ks/shiti/a/科目一考试C1试题科目1考试网 km
4、1ks/shiti/d/科目一考试B2试题科目一考试网 kmyks/科目一模拟考试2019题库科目一考试网 kmyks/c1/科目一模拟考试C1科目一考试网 kmyks/c2/科目一模拟考试C2科目一考试网 kmyks/a2/科目一模拟考试A2科目一考试网 kmyks/b2/科目一模拟考试B2科目一考试网 kmyks/a1/科目一模拟考试A1科目一考试网 kmyks/a3/科目一模拟考试A3真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考 考点整合 1直线与平面、平面与平面的平行与垂直的向量方法设直线l的方向向量为
5、a(a1,b1,c1),平面,的法向量分别为(a2,b2,c2),(a3,b3,c3),则(1)线面平行laa0a1a2b1b2c1c20.真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳
6、总结思思维升华维升华专题训练专题训练对对接高考接高考 热点一向量法证明平行与垂直【例1】如图,在直三棱柱ADEBCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点,求证:(1)OM平面BCF;(2)平面MDF平面EFCD.真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华
7、维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考【训练1】如图,在直三棱柱ABCA1B1C1中,A
8、BC为等腰直角三角形,BAC90,且ABAA1,D,E,F分别为B1A,C1C,BC的中点,求证:(1)DE平面ABC;(2)B1F平面AEF.真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考 证明如图建立空间直角坐标系 Axyz,不妨设ABAA14,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4)真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦
9、题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考 热点二利用空间向量求空间角 微题型1求线面角【例21】(2019福建卷)在平面四边形ABCD中,ABBDCD1,ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考
展开阅读全文