二极体施与反偏下iD课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二极体施与反偏下iD课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二极体 施与 偏下 iD 课件
- 资源描述:
-
1、Semiconductor Materials and Diodes半導體材料與特性pn接面二極體電路:直流分析與模型二極體電路:交流等效電路其他形式二極體-Donald A.Neamen-Microelectronics Circuit Analysis and Design2/86半導體材料與特性(1/25)前言最常見的半導體為矽矽,用在半導體元件及積體電路其他特殊用途的則有砷化鎵砷化鎵及相關的化合物,用在非常高速元件及光元件半導體原子:質子、中子、電子電子能量隨殼層半徑增加而增加價電子:最外層的電子,化學活性主要由其數目而定-Donald A.Neamen-Microelectronic
2、s Circuit Analysis and Design3/86週期表依價電子數而排列第四族之矽與鍺為元素半導體砷化鎵為三五族的化合物半導體原子、晶格、共價鍵無交互作用之原子(如圖),靠太近則價電子交互作用形成晶格,此共用之價電子稱為共價鍵因最外邊的價電子仍為可用的,所以可再加入額外原子形成更大的單一晶格結構半導體材料與特性(2/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design4/86電子與電洞T=0K時矽為絕緣體:電子在最低能態,一個小電場無法使電子移動,因被束縛於所屬的原子增加溫度:價電子得到足夠的熱能Eg(
3、能隙能量)以破壞共價鍵而移出原位,成為晶格內的自由電子,且在原位之空能態為正電荷,此粒子即為電洞半導體材料與特性(3/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design5/86半導體內之電流自由電子流動電洞流:價電子獲得能量而流動至 鄰近的的空位如同正電荷反向移動。能隙能量Eg:破壞共價鍵的最低能量能隙能量在3-6 eV者為絕緣體,由於室溫之下幾乎沒有自由電子存在,反之為導體半導體的數量級約為1 eV(=1.610-19焦耳)半導體材料與特性(4/25)-Donald A.Neamen-Microelectronic
4、s Circuit Analysis and Design6/86能帶圖觀念(a)EV為價電帶最高能量EC為導電帶最低能量Eg=EV-EC兩能帶間為禁止能隙電子無法在禁止能隙中存在(b)顯示傳導電子產生過程電子獲得足夠能量從價電帶躍遷到導電帶半導體材料與特性(5/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design7/86本質半導體電子及電洞濃度為半導體材料特性之重要參數,因其直接影嚮電流之大小本質半導體無其他物質在晶格內之單一晶格半導體材料電子與電洞之密度相同,因皆由熱產生本質載子濃度 B為常數,與特定之半導體材導有
5、關 Eg與溫度之關係不重 k為Boltzmann常數=8610-6 eV/KkTEigeBTn22/3半導體材料與特性(6/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design8/86Example 1.1:T=300 K求矽之本質載子濃度解解:代入公式即可結果為1.51010 cm-3,雖不小,但比起原子濃度51022 cm-3則很小kTEigeBTn22/3半導體材料與特性(7/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design9/86外
6、質半導體加入雜質本質半導體的電子電洞濃度相當小,僅可有微量電流。適當地加入控制量的某些雜質可大為提高。適宜的雜質可進入晶格取代原來的電子(即使價電子結構不同),常用雜質來自三五族半導體材料與特性(8/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design10/86施體雜質:貢獻自由電子,如磷常用第五族元素有磷與砷。四個價電子用以滿足共價鍵的要求。第五個價電子則鬆散去束縛在原子上,室溫下可有足夠熱能破壞鍵結而成自由電子,因而對半導體電流有所貢獻。當第五個價電子移動到導電帶,磷離子則形成帶正電的離子。半導體材料與特性(9/2
7、5)-Donald A.Neamen-Microelectronics Circuit Analysis and Design11/86剩下之原子帶正電荷,但在晶格內不可移動,所以對電流無貢獻施體雜質產生自由電子,但不產生電洞摻雜:加入雜質,控制自由電子(洞)濃度n型半導體:含施體雜質原子之半導體半導體材料與特性(10/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design12/86受體雜質:接受價電子常用第三族元素有硼。三個價電子用在三個共價鍵 ,剩下一開放的鍵結位置。室溫下鄰近的價電子可有足夠 熱能而離至這個位置,因
8、而產生電洞。剩下之原子帶負電荷,不可移動,有產生電洞而產生電洞電流。半導體材料與特性(11/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design13/86受體體雜質產生電洞,但不產生電子。p型半導體:含受體雜質原子之半導體。外質半導體含雜質原子之半導體材料,亦稱摻雜半導體。摻雜過程中可控制以決定材料之導電度及電流。半導體材料與特性(12/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design14/86電子電洞之濃度關係在熱平衡下為n0 為自由電子
9、之熱平衡濃度,p0為電洞之熱平衡濃度,ni為本質載子濃度室溫下每個施(受)體原子產生一個自由電子(電洞)若施(受)體濃度 遠大於本質濃度。200inpn)(00adNpNn2200()iidannpnNNadNN)(半導體材料與特性(13/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design15/86多數及少數載子:相差數個階級多數及少數載子:相差數個階級n型半導體:電子為多數載子,電洞為少數載子p型半導體:電洞為多數載子,電子為少數載子半導體材料與特性(14/25)-Donald A.Neamen-Microelec
10、tronics Circuit Analysis and Design16/86Example 1.2:求熱平衡下之電子電洞濃度帶入公式即可考慮在 T=300 K 下矽被磷摻雜至 Nd=1016cm-3 的濃度。請記得例1.1中ni=1.51010cm-3解解:因Ndni,電子濃度為 而電洞濃度變為16310odnNcm210243161.5 102.25 1010iodnpcmN半導體材料與特性(15/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design17/86漂移與擴散兩種導致電子電洞(統稱載子)在半導體內移動之
11、程序漂移:由電場引起擴散:由濃度改變(濃度梯度)所引起梯度的成因可為非均勻摻雜分佈或在某區注入某量的電子或電洞漂移-假設給半導體一個電場,此場產生力量作用在自由電子及電洞而產生漂移速度與移動半導體材料與特性(16/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design18/86n型半導體:電場方向與對電子產生之力量反向漂移速度 ,負號表電場相反方向 為電子遷移率,可想成電子在半導體內移動效果的參數。低摻雜矽之典型值為1350(cm2/V-s)漂移電流密度 n是電子濃度(個/cm3),e是電子電荷 漂移電流與電子流反向,但
12、與電場同向EvndnnEenEenenvJnndnn)(半導體材料與特性(17/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design19/86p型半導體:電場方向與對電洞產生之力量同向漂移速度 ,正號表相同方向 為電洞遷移率,低摻雜矽之典型值為480(cm2/V-s),略小於一半的電子遷移率漂移電流密度 p是電洞濃度(個/cm3),e是電子電荷 漂移電流與電場與電洞流同向EvpdpPEepEepenvJnpdpp)(半導體材料與特性(18/25)-Donald A.Neamen-Microelectronics Cir
13、cuit Analysis and Design20/86總漂移電流密度:半導體有電子及電洞 為半導體的導電度與電子電洞之濃度有關,單位為(-cm)-1。製成時選擇摻雜可控制導電度。,為電阻率,單位為(-cm)。可看成另一形式的歐姆定律。1()npnpJenEepEenepEEE1半導體材料與特性(19/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design21/86Example 1.3:求漂移電流密度 考慮在 T=300 K 下之矽摻雜濃度Nd=8*1015cm-3的砷原子。假設遷移率各為 與 。且外加電場為100
14、V/cm。解解:由例1.1 之結果知,室溫下矽之ni=1.51010cm-3。所以,從(1.9)式得21024315(1.5 10)2.81 108 10idnpcmN21350/ncmVs2480/-pcmV S半導體材料與特性(20/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design22/86由於兩種載子的濃度有很大的差異,因此導電度可簡化為或漂移電流可為npnenepen1 91 51(1.61 0)(1 3 5 0)(81 0)1.7 3()c m 2(1.73)(100)173/JEA cm半導體材料與特性
15、(21/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design23/86擴散:粒子由高濃度向低濃度流動是一種統計現象,與動力學理論有關高濃度粒子一半往低濃度流,低濃度亦一半往高濃度流,所以淨結果是高濃度粒子往低濃度流電子擴散方向與電流方向:一維方程式e電荷量Dn為電子擴散係數 電子濃度梯度電流方向為正X軸方向nndnJeDdxdndx半導體材料與特性(22/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design24/86電洞擴散方向與電流方向:一維
16、方程式e電荷量Dp為電子擴散係數 電子濃度梯度電流方向為負X軸方向愛因斯坦方程式擴散現象的擴散係數與漂移現象的遷移率兩者間的關係總電流密度:漂移與擴散兩成份之總和通常僅其中一項主導-ppdpJeDdxdpdx0.026 pnnpDDkTVe半導體材料與特性(23/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design25/86多出載子半導體元件(熱)平衡的消失供給電壓,或有電流存在時若價電子與照入之光子交互作用,可能獲得足夠的能量以破壞共價鍵,而產生電子電洞對增加的電子電洞即多出電子及多出電洞電子(電洞)濃度:為多出電子
17、(電洞)濃度 為熱平衡下的電子(電洞)濃度00 ()nnnppp()np()OOnp半導體材料與特性(24/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design26/86穩態:載子不會無限增加電子電洞復合過程:自由電子與電洞復合多出載子生命期:多出電子與電洞復合前存在的平均時間半導體材料與特性(25/25)-Donald A.Neamen-Microelectronics Circuit Analysis and Design27/86PN接面(1/22)前言pn接面:半導體電子學的真正威力所在在多數半導體應用中,整個
18、半導體材料是單一晶格,一區摻雜成p型,相鄰區則摻雜成n型平衡的PN接面摻雜分佈及冶金接面-(b)圖的x=0的介面-Donald A.Neamen-Microelectronics Circuit Analysis and Design28/86在合金接面處最初電子電洞到對邊材料之擴散梯度最大從p區的電洞流使帶負電荷的受體離子裸露從n區的電子流使帶正電荷的施體離子裸露在此區域造成正負電離子分離空間,形成內部電場擴散之終止:若無外加電壓,引發之電場會使擴散停止,而達到熱平衡治金接面跨此接面電子電洞皆有很大的濃度梯度PN接面(2/22)-Donald A.Neamen-Microelectronic
19、s Circuit Analysis and Design29/86空乏區(空間電荷區):上述正負離子所存在的區域此區域內無可移動之電子或電洞內建電位障 :在p(n)區受(施)體濃度VT:熱電位,室溫T=300 K約為0.026 V因對數函數,Vbi與摻雜濃度關係不重,一般矽的pn接面的Vbi約為下例題所求值附近0.1-0.2 V之間無法以電壓計量得,因探針與半導體會形成新的電位障保持平衡下,此電位未產生電流22lnlnidaTidabinNNVnNNekTV)(daNNPN接面(3/22)-Donald A.Neamen-Microelectronics Circuit Analysis a
20、nd Design30/86Example 1.5 求內建電位障。考慮在 T=300 K 下之矽pn接面,p區摻雜至Na=1016 cm-3 而n區摻雜至Nd=1017 cm-3解解:隨例題1-1可發現在室溫下,矽的本質載子濃度約為帶入公式可求得1031.5 10incmPN接面(4/22)16172102(10)(10)ln()(0.026)ln0.757(1.5 10)adbiTiN NVVVn-Donald A.Neamen-Microelectronics Circuit Analysis and Design31/86反偏下的PN接面特性正電壓接在N區外加電壓所形成電場EA的方向與空
21、乏區電場方向相同使P(N)區的電洞(電子)向外側電路推回PN接面無載子流過所以反偏下無電流產生因空間電荷區的電場增加,正負離子電荷也增加,在摻雜濃度不變下,空間電荷區的寬度會增加PN接面(5/22)-Donald A.Neamen-Microelectronics Circuit Analysis and Design32/86接面電容(空乏層電容)Cj0為無施加電壓時之接面電容因額外空乏區的正負離子電荷隨反偏而增加值常在或低於pF,隨反向偏壓增加而減少,最大電場發生在冶金接面不論空間電荷區之電層或施加的反偏電壓不可能無限增加,因在某個點即發生崩潰而產生極大的反偏電流。接面電容將影響PN接面開
22、關的特性2/101biRjjVVCCPN接面(6/22)-Donald A.Neamen-Microelectronics Circuit Analysis and Design33/86Example 1-6考慮在 T=300 K 下具Na=1016cm-3及Na=1016cm-3摻雜的矽pn接面。設Na=1016cm-3且Cjo=0.5PF。計算VR=1V及VR=5V下之接面電容。解解:內建電位由下決定VR=1V與VR=5V時的電容各為1615210 2(10)(10)ln()(0.026)ln0.637(1.5 10)adbiTiN NVVVn1/21/21(1)(0.5)(1)0.31
23、20.637RjjobiVCCpFV1/25(0.5)(1)0.1680.637jCpFPN接面(7/22)-Donald A.Neamen-Microelectronics Circuit Analysis and Design34/86順偏下的PN接面:順向偏壓使電位障下降施加電壓所導致的施加電場與熱平衡的空間電荷區的電場反向,所以總電場小於熱平衡值順偏電流:電子(電洞)由n至p(p至n)因施加電電場破壞了原來擴散與E場力間的平衡順向偏壓需小於內建電位障PN接面(8/22)-Donald A.Neamen-Microelectronics Circuit Analysis and Desi
24、gn35/86順向電流的穩態條件多數載子電子(電洞)從N(P)區擴散到對向P(N)區進入對向區的主要載子成為此區的少數載子在空乏區邊緣的少數載子濃度分佈增加多出的少數載子擴散至P-與N-中性區與此區的主要載子複合PN接面(9/22)-Donald A.Neamen-Microelectronics Circuit Analysis and Design36/86理想電壓與電流關係IS為反向飽和電流,與摻雜濃度及接面截面積有關。對矽的PN接面而言,其值在10-15至10-13 AVT為熱電壓,室溫下約為0.026 Vn為放射係數或理想因子,介於1至2間(通常用1)與空乏區的電子電洞結合有關小電流
25、時複合電流主宰,值會接近2大電流時複合電流影響不大,值則接近11TDnVvSDeIiPN接面(10/22)-Donald A.Neamen-Microelectronics Circuit Analysis and Design37/86Example 1.7考慮一在 T=300 K下之矽PN接面,其Is=10-14A且n=1。求vD=+0.70V及vD=-0.70V時之二極體電流。解解:vD=+0.70V時,pn接面乃順向偏壓,可得 vD=-0.70V時,pn接面乃反向偏壓,可得-0.70()14140.0261(10)110DTvVDSiIeeA 0.70()140.0261(10)14.
展开阅读全文