工程方法概率分布介绍课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《工程方法概率分布介绍课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 方法 概率 分布 介绍 课件
- 资源描述:
-
1、Page 1Page 2What is a Probability Distribution?什么是概率分布什么是概率分布?Experiment,Sample Space,Event 实验,样本空间,事件Random Variable,Probability Functions(pmf,pdf,cdf)随机变量,概率函数Discrete Distributions离散分布离散分布Binomial Distribution 二项式分布Poisson Distribution 泊松分布.Hypergeometric distribution 超几何分布Continuous Distribution
2、s连续分布连续分布Normal Distribution 正态分布Uniform distribution 均匀分布Exponential distribution 指数分布Logarithmic normal distribution 对数正态分布Weibull distribution 威布尔分布Sampling Distributions样本分布样本分布Z Distribution Z 分布t Distribution t 分布c2 Distribution c2 分布F Distribution F 分布Page 3As we progress from description of
3、data towards inference of data,an important concept is the idea of a probability distribution.当我们从描述性数据进步到推论性数据时,一个重要的内容就是概率分布的概念.To appreciate the notion of a probability distribution,we need to review various fundamental concepts related to it:为了解概率分布的概念,我们需要复习各种基本相关概念:Experiment,Sample Space,Even
4、t实验,样本空间,事件Random Variable 随机变量.What do we mean by inference of data?Page 4Experiment实验实验An experiment is any activity that generates a set of data,which may be numerical or not numerical.实验是产生一系列数据的行为,数据有可能是数字的或非数字的.1,2,.,6(a)Throwing a dice掷骰子Experiment generates numerical/discrete dataPinsStainsR
5、ejectAccept(b)Inspecting for stain marks检检查污点印记查污点印记Experiment generates attribute dataPins(c)Measuring shaft 测量 轴径10.53 mm10.49 mm10.22 mm10.29 mm11.20 mmExperiment generates continuous data实验产生数字实验产生数字/离散数据离散数据实验产生计数性数据实验产生计数性数据实验产生连续性数据实验产生连续性数据Page 5Random Experiment 随机实验随机实验If we throw the dice
6、 again and again,or produce many shafts from the same process,the outcomes will generally be different,and cannot be predicted in advance with total certainty.如果我们掷子一次由一次,或从相同工序生产许多轴,结果会是不同的.不能完全提前预测.An experiment which can result in different outcomes,even though it is repeated in the same manner e
7、very time,is called a random experiment.一个实验导致不同的结果,即使它是每次以相同方式,这叫做随机实验Page 6Sample Space样本空间样本空间The collection of all possible outcomes of an experiment is called its sample space.收集实验的所有可能结果称为样本空间Event事件事件An outcome,or a set of outcomes,from a random experiment is called an event,i.e.it is a subse
8、t of the sample space.一个结果,或一套结果,从一个随机实验出来的称为事件,也就是样本空间的子集Page 7Event事件事件Example例 1:Some events from tossing of a dice.从掷骰子的一些事件.Event 事件1:the outcome is an odd number 结果是奇数Event事件 2:the outcome is a number 4 大于4的结果Example例 2:Some events from measuring shaft:从测量轴径的一些事件Event事件 1:the outcome is a diam
9、eter mean直径大于平均值Event 事件2:the outcome is a part failing specs.未通过规格的结果.E2=x USL E2=5,6 E1=1,3,5 E1=x mPage 8Random Variable随机变量随机变量From a same experiment,different events can be derived depending on which aspects of the experiment we consider important.从一个相同的实验,由于我们认为重要的实验方面不同而产生不同的结果In many cases,i
10、t is useful and convenient to define the aspect of the experiment we are interested in by denoting the event of interest with a symbol(usually an uppercase letter),e.g.:许多方面,它是很有用和方便的定义我们感兴趣的实验方面,通过一个大写的字母表示.举例说明:Let X be the event“the number of a dice is odd”.用X代表事件”骰子的数字是奇数”Let W be the event“the
11、shaft is within specs.”.用W代表事件”轴径尺寸在规格内”Page 9Random Variable随机变量随机变量We have defined a function that assigns a real number to an experimental outcome within the sample space of the random experiment.我们定义了一个函数,其代表了一个在随机实验的样本空间的一个真实实验数字This function(X or W in our examples)is called a random variable b
12、ecause:函数(例子中的X 或W)称为随机变量,是因为:The outcomes of the same event are clearly uncertain and are variable from one outcome to another一个事件的发生结果是明显不定的,是同另一个结果相异的.Each outcome has an equal chance of being selected.每一个结果有相同被选择的机会.PinsMeasuring shaft X=Parts out of specs.(LSL=8 mm,USL=10 mm)0.,7.99998,7.99999,
13、8,8,00001,9.99999,10,10.00001,10.00002,LSLUSLPage 10Probability概率概率To quantify how likely a particular outcome of a random variable can occur,we typically assign a numerical value between 0 and 1(or 0 to 100%).为量化一个随机变量的指定结果发生的可能性,我们指定一个数字介于0和1之间(或0100%)This numerical value is called the probability
14、 of the outcome.这个数字称为结果的概率There are a few ways of interpreting probability.A common way is to interpret probability as a fraction(or proportion)of times the outcome occurs in many repetitions of the same random experiment.有几种方式解释概率.一般的方式是解释概率为在许多相同实验重复后发生的分数(或比例)次数This method is the relative freque
15、ncy approach or frequentist approach to interpreting probability.这种方法概率解释的相对频率模拟或单位频率模拟Page 11Probability Distribution概率分布概率分布When we are able to assign a probability to each possible outcome of a random variable X,the full description of all the probabilities associated with the possible outcomes i
16、s called a probability distribution of X.当我们能够表明一个随机变量的某一个可能结果的概率,则整个可能结果的概率的描述称为X的概率分布A probability distribution is typically presented as a curve or plot that has:一个概率分布被代表为一个曲线或点应有:All the possible outcomes of X on the horizontal axisX的所有的可能结果在水平轴线上The probability of each outcome on the vertical
17、axis每一个结果的概率在纵轴上Page 12随机现象 随机试验 样本点、样本空间 语言表示 事件的表示 集合表示 事件的特征 包含、相等 随机事件 事件间的关系 互斥 事件的运算:对立、并、交、差 Page 13Normal DistributionExponential DistributionUniform DistributionBinomial DistributionDiscrete Probability Distributions(Theoretical)离散概率分布离散概率分布(理论上理论上)Continuous Probability Distributions(Theor
18、etical)连续概率分布连续概率分布(理论上理论上)Page 14Created from actual observations.Usually represented as histograms.根据实际观测得来,通常用直方图代表Empirical distributions,like theoretical distributions,apply to both discrete and continuous distributions.经验分布,象理论上的分布,适用于离散和连续分布.Page 15Three common important characteristics:三个常用重
19、要Shape-defines nature of distribution形状 -定义分布的自然性Center-defines central tendency of data中心 -定义中心趋势的数据Spread分布(或离散,或刻度)-defines dispersion of data(or Dispersion,or Scale)定义数据的离散Exponential DistributionUniform Distribution统一分布统一分布指数分布指数分布Page 16 xexfx22121mShape形状形状lDescribes how the probabilities of
20、all the possible outcomes are distributed.l描述所有可能结果可能性的分布lCan be described mathematically with an equation called a probability function,e.g:l可以用一个概率函数数字表示,举例说明Probability function概率函数Lowercase letter represents a specific value of random variable X小字母代表随机变量X某一个特定值 f(x)means P(X=x)Page 1700f(t)1a2a3
21、ab=4210.5Probability Functions概率函数概率函数For a discrete distribution,对于一个离散分布f(x)called is the probability f(x)称为概率集中:mass function(pmf),e.g.:函数,举例说明For a continuous distribution,对于一个连续分布f(x)is called the probability f(x)称为概率密度density function(pdf),e.g.:函数举例说明 n,0,1,2,xp1pxnxPxnx 0,1tettftbabbabPage 18
22、Binomial DistributionNormal DistributionThe total probability for any distribution sums to 1.任何分布的全部概率总和为1In a discrete distribution,probability is representedas height of the bar.在一个离散分布,概率用柱状表示In a continuous distribution,probability is representedas area under the curve(pdf),between two points.在一
23、个连续分布,概率用曲线下两点间面积表示Page 19Probability of An Exact Value Under PDF is Zero!PDF下一个准确值的概率是零下一个准确值的概率是零For a continuous random variable,the probability of an exact value occurring is theoretically 0 because a line on a pdf has 0 width,implying:对于一个连续随机变量,一个准确值发生的概率理论上是0,是因为PDF上一条线的宽度是0”.意味着:In practice,
24、if we obtain a particular value,e.g.12.57,of a random variable X,how do we interpret the probability of 12.57 happening?实际上,如果我们获得一个特定的值,举例说明.12.57,随机变量X的一个值,我们如何解释12.57发生的概率.It is interpreted as the probability of X assuming a value within a small interval around 12.57,i.e.12.565,12.575.解释为X假定一个值的概
25、率在一个小间距在12.57左右,也就是说12.565,12.575.This is obtained by integrating the area under the pdf between 12.565 and 12.575.在PDF下12.565 和 12.575之间的整个面积为此点的概率.P(X=x)=0for a continuousrandom variablePage 20Exponential DistributionArea of a line is zero!f(9.5)=P(X=9.5)=0To get probability of 20.0,integrate area
展开阅读全文