书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型广州市2023届高三上学期12月数学调研试卷+答案.pdf

  • 上传人(卖家):副主任
  • 文档编号:4590652
  • 上传时间:2022-12-22
  • 格式:PDF
  • 页数:14
  • 大小:2.89MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《广州市2023届高三上学期12月数学调研试卷+答案.pdf》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广州市 2023 届高三 上学 12 数学 调研 试卷 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、 数学试卷 第 1 页(共 5 页)14cm5cm58cm秘密秘密 启用前启用前 试卷类型:试卷类型:B B 2023届广州市高三年级调研测试 数 学 本试卷共5页,22小题,满分150分。考试用时120分钟。注意事项:注意事项:1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用 2B 铅笔在答题卡的相应位置填涂考生号。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的 答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能 答在试卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目 指定区域内的相应位置上;如需改动,先

    2、划掉原来的答案,然后再写上新答 案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一、选择题:本题共一、选择题:本题共8 8小题,每小题小题,每小题5 5分,共分,共4040分在每小题给出的四个选分在每小题给出的四个选项中,只有一项项中,只有一项是符合题目要求的是符合题目要求的 1已知集合2Ay yx,ln(2)Bx yx,则BA A0,)B(0,2)C0,2)D(,2)2.复数i12iz 的共轭复数z在复平面内对应的点位于 A第一象限 B第二象限 C第三象限 D第四象限 3.已知p:(2)(3)0 xx,q:12x,则p是q的 A

    3、充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 4.灯笼起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的 红灯笼,营造一种喜庆的氛围如图 1,某球形灯笼的轮廓由三部分组成,上下两部分是 两个相同的圆柱的侧面,中间是球面除去上下两个相同球冠剩下的部分如图 2,球冠是 由球面被平面截得的一部分,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在 球面的半径为R,球冠的高为h,则球冠的面积S 2 Rh如图 1,已知该灯笼的高为 58cm,圆柱的高为 5cm,圆柱的底面 圆直径为 14cm,则围成该灯笼中间球 面部分所需布料的面积为 A1940 cm2

    4、B2350 cm2 C2400 cm2 D2540 cm2 图 1 图 2 数学试卷 第 2 页(共 5 页)5.若2,且1 cos2)(1 sin)sin2 cos(,则下列结论正确的是 A52+2 B324 C74 D2 6.为调查某地区中学生每天睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9小时,方差为1,抽取高中生1200人,其每天睡眠时间均值为8小时,方差为0.5,则估计该地区中学生每天睡眠时间的方差为 A.0.96 B.0.94 C.0.79 D.0.75 7.已知函数()f x的定义域为 R,且(1)(1)2f xf x,(2)f x为偶

    5、函数,若(0)2f,则1151()kf k A.116 B.115 C.114 D.113 8.双曲线4:22 yxC的左,右焦点分别为1F,2F,过2F作垂直于x轴的直线交双曲线于A,B两点,21FAF,21FBF,ABF1的内切圆圆心分别为1O,2O,3O,则321OOO的面积是 A.826 B.426 C.248 D.246 二、选择题:二、选择题:本题共本题共4小题,每小题小题,每小题5分,共分,共20分在每小题给出的四个选项中,有多项符分在每小题给出的四个选项中,有多项符合题目要求,全部选对的得合题目要求,全部选对的得5分,有选错的得分,有选错的得0分,部分选对的得分,部分选对的得2

    6、分分 9.已知A,B分别为随机事件A,B的对立事件,0P A,0P B,则下列结论正确的是 A.1P AP A B.1PBAP A B C.若A,B互斥,则 P ABBP A P D.若A,B独立,则()P A BP A 10.已知)(xf是)(xf的导函数,xbxaxfcossin)()0(ab,则下列结论正确的是 A.将)(xf图象上所有的点向右平移2个单位长度可得)(xf的图象 B.)(xf与)(xf的图象关于直线34x 对称 C.)()(xfxf与)()(xfxf有相同的最大值 D.当ba 时,)()(xfxf与)()(xfxf都在区间0,2上单调递增 数学试卷 第 3 页(共 5 页

    7、)FEO2O111在矩形ABCD中,2AB,3BC,将ADC沿对角线AC进行翻折,点D翻折至点D,连接D B,得到三棱锥DABC,则在翻折过程中,下列结论正确的是 A.三棱锥DABC的外接球表面积不变 B.三棱锥DABC的体积最大值为22 C.异面直线AD与BC所成的角可能是90 D.直线AD与平面ABC所成角不可能是60 12.已知0a,0b,eln10aabb,则 A1lnba B1eab Cln1ab D1ab 三、填空题:本题共三、填空题:本题共4 4小题,每小题小题,每小题5 5分,共分,共2020分分 13.已知5()(1)axx的展开式中4x的系数是20,则实数a 14.已知向量

    8、2,a,1,1b,且ab,则 ,ab在b方向上的投影向量的坐标为 15.若过点(0,)0bb 只可以作曲线exxy 的一条切线,则b的 取值范围是 16.如图是数学家 Germinal Dandelin 用来证明一个平面截圆锥得到 的截口曲线是椭圆的模型在圆锥内放两个大小不同的小球,使得 它们分别与圆锥的侧面与截面都相切,设图中球1O,球2O的半径分 别为4和2,球心距离122 10OO,截面分别与球1O,球2O相 切于点E,F(E,F是截口椭圆的焦点),则此椭圆的离心率等于 四、解答题:本题共四、解答题:本题共 6 6 小题,共小题,共 7070 分解答应写出文字说明、证明过程或演算步骤分解

    9、答应写出文字说明、证明过程或演算步骤 17.(10 分)已知等差数列na的前n项和为nS,且634SS,*221()nnaanN(1)求数列na的通项公式;(2)设12nnnba,求数列 nb的前n项和nT 数学试卷 第 4 页(共 5 页)PFEDCBA18.(12 分)在ABC中,内角CBA,的对边分别为cba,,bc2,CA2sin3sin2.(1)求Csin;(2)若ABC的面积为273,求AB边上的中线CD的长.19.(12 分)如图,已知四棱锥ABCDP的底面ABCD是菱形,平面PBC平面ABCD,30ACD,E为AD的中点,点F在PA上,AFAP3.(1)证明:PC/平面BEF;

    10、(2)若PDBPDC,且PD与平面ABCD所成的角为45,求平面AEF与平面BEF夹角的余弦值.20.(12 分)世界卫生组织建议成人每周进行2.5至5小时的中等强度运动已知A社区有56%的居民每周运动总时间超过5小时,B社区有65%的居民每周运动总时间超过5小时,C社区有70%的居民每周运动总时间超过5小时,且A,B,C三个社区的居民人数之比为5:6:9 (1)从这三个社区中随机抽取1名居民,求该居民每周运动总时间超过5小时的概率;(2)假设这三个社区每名居民每周运动总时间为随机变量X(单位:小时),且2(5.5,)XN现从这三个社区中随机抽取3名居民,求至少有两名居民每周运动总时间为5至6

    11、小时的概率 数学试卷 第 5 页(共 5 页)21.(12 分)已知抛物线2:2(0)C ypx p的焦点F到准线的距离为2,圆M与y轴相切,且圆心 M与抛物线C的焦点重合(1)求抛物线C和圆M的方程;(2)设00,P xy02x 为圆M外一点,过点P作圆M的两条切线,分别交抛物线C于两个不同的点1122,A x yB xy和点3344,Q xyR xy且1234=16y y y y,证明:点P在一条定曲线上 22.(12 分)已知函数2()exf xax,0a且1a.(1)设xxxfxge)()(,讨论()g x的单调性;(2)若1a且)(xf存在三个零点1x,2x,3x.()求实数a的取值范围;()设321xxx,求证:e12e3321xxx.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广州市2023届高三上学期12月数学调研试卷+答案.pdf
    链接地址:https://www.163wenku.com/p-4590652.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库