新北师大版八年级数学下册《三章-图形的平移与旋转-回顾与思考》课件2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新北师大版八年级数学下册《三章-图形的平移与旋转-回顾与思考》课件2.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三章-图形的平移与旋转-回顾与思考 北师大 八年 级数 下册 图形 平移 旋转 回顾 思考 课件 下载 _八年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、简单旋转图形的最值问题简单旋转图形的最值问题 例1如图,在ABC中,ACB=90,AC=12,BC=6,点D在AC上,且AD=8,将线段AD绕点A旋转,点D对应点为D,连接BD,点F为BD的中点,连接CF,则线段CF的最大值为 .方法归纳:遇到中点,应从三角形中位线和直角三角形斜边的中线角度考虑,当且仅当三点共线时方有最值.变式练习1.如图,在锐角ABC中,AB=4,BC=5,ACB=45,将ABC绕点B按逆时针方向旋转,得到,点E为线段AB的中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转中,点P的对应点是点,则线段 长度的最大值与最小值分别为 .方法归纳:在旋转过程中注意旋转到
2、特殊位置时,把动点问题转化为固定的三角形问题,当且仅当三点共线时方有最值.例2.如图,PA=2,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧,当APB变化时,求PD的最大值.方法归纳:在正方形或等腰直角三角形中,求线段的最值问题,通常将线段转移到已知边长的三角形中,利用“两点之间,线段最短”等知识来解决问题.构造等腰直角三角形是解题的关键,也是本题的难点.例3.如图,四边形ABCD是正方形,ABE是等边三角形,点M为对角线BD上任意一点,将BM绕点B逆时针旋转60得到BN,连接AM、CM、EN.(1)求证:AMB ENB;例3.如图,四边形ABCD是正方形,ABE是等
3、边三角形,点M为对角线BD上任意一点,将BM绕点B逆时针旋转60得到BN,连接AM、CM、EN.(2)如图2,若正方形的边长为2,点M为正方形内任意一点,求MA+MB+MC的最小值.方法归纳:在正方形或等腰直角三角形中,求几条线段和的最值问题,通常将几条线段转移到同一直线上,利用“两点之间,线段最短”来解决问题.构造出等边三角形是解题的关键,也是本题的难点.变式练习3(1)如图1,ABC中,ACB=30,BC=6,AC=5,在ABC内部有一点P,连接PA、PB、PC,则PA+PB+PC的最小值 .(2)如图,已知等腰三角形ABC,CA=CB=6cm,AB=8cm,点O为ABC内一点(点O不在ABC边界上),请你运用图形旋转和“两点之间线段最短”等数学知识、方法,求出OA+OB+OC的最小值为 .方法归纳:从旋转出发,找基本图形和基本结论;将不确定的元素尽可能的转化为确定的元素;利用熟悉的几何最值解决问题.课堂小结:本节课,你有哪些收获?
展开阅读全文