书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型新人教版九年级下281锐角三角函数1课件教程.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4588519
  • 上传时间:2022-12-22
  • 格式:PPT
  • 页数:30
  • 大小:1.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《新人教版九年级下281锐角三角函数1课件教程.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新人 九年级 281 锐角三角 函数 课件 教程
    资源描述:

    1、意大利比萨尔塔在1350年落成时就已倾斜,其塔顶离中心偏离垂直中心线2.1m,1972年比萨地区发生地震,这座高54.5m的斜塔在大幅度摇摆后仍巍然屹立,但塔顶中心点偏离垂直中心线增至5.2m,而且还以每年增加1cm的速度继续倾斜,随时都有倒塌的危险。为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使塔顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm。如果要你根据上述信息,用“塔身中心线与垂直中心线所成的角(如图)“来描述比萨斜塔的倾斜程度,你能完成吗?从数学角度看,上述问题就是:已知直角三角形的某些边长,求其锐角的度数,对于直角三角形,我们知道三边之间的关系和两个锐角

    2、之间的关系,但我们不知道”边角之间的关系“,因此,这一问题的解答需要学习新的知识。塔身中心线垂直中心线10m1m 5m10m(1)(2)梯子在上升变梯子在上升变陡陡的过程中,的过程中,倾倾斜角,斜角,铅直高度与梯子的铅直高度与梯子的比比,水水平宽度与梯子的平宽度与梯子的比比,铅直高度与铅直高度与水平宽度的水平宽度的比比,都发生了什么变都发生了什么变化?化?水平宽度水平宽度铅直高度铅直高度倾斜角倾斜角铅直高度铅直高度水平宽度水平宽度梯子在上升变梯子在上升变陡陡的过程中,的过程中,倾倾斜角,斜角,铅直高度与梯子的铅直高度与梯子的比比,水水平宽度与梯子的平宽度与梯子的比比,铅直高度与铅直高度与水平宽

    3、度的水平宽度的比比,都发生了什么变都发生了什么变化?化?铅直高度铅直高度水平宽度水平宽度梯子在上升变梯子在上升变陡陡的过程中,的过程中,倾倾斜角,斜角,铅直高度与梯子的铅直高度与梯子的比比,水水平宽度与梯子的平宽度与梯子的比比,铅直高度与铅直高度与水平宽度的水平宽度的比比,都发生了什么变都发生了什么变化?化?铅直高度铅直高度水平宽度水平宽度梯子在上升变梯子在上升变陡陡的过程中,的过程中,倾倾斜角,斜角,铅直高度与梯子的铅直高度与梯子的比比,水水平宽度与梯子的平宽度与梯子的比比,铅直高度与铅直高度与水平宽度的水平宽度的比比,都发生了什么变都发生了什么变化?化?铅直高度铅直高度水平宽度水平宽度梯子

    4、在上升变梯子在上升变陡陡的过程中,的过程中,倾倾斜角,斜角,铅直高度与梯子的铅直高度与梯子的比比,水水平宽度与梯子的平宽度与梯子的比比,铅直高度与铅直高度与水平宽度的水平宽度的比比,都发生了什么变都发生了什么变化?化?梯子梯子越陡越陡倾斜角倾斜角倾斜角倾斜角越大越大铅直高度与梯子的比铅直高度与梯子的比倾斜角倾斜角越大越大水平宽度与梯子的比水平宽度与梯子的比倾斜角倾斜角越大越大铅直高度与水平宽度铅直高度与水平宽度的的比比铅直高度铅直高度水平宽度水平宽度越大越大越大越大越小越小越大越大 AB1 C1 CB想一想想一想(1)直角三角形直角三角形AB1C1和直角三角和直角三角 形形ABC有什么关系有什

    5、么关系?(2)和和 ,和和 ,和和 有什么关系有什么关系?(3)如果梯子的倾斜角不变,如果梯子的倾斜角不变,只改变只改变B在梯子上的位置呢在梯子上的位置呢?BCAB111B CABACAB11ACABBCAC111B CAC AB1 C1 CB想一想想一想(1)直角三角形直角三角形AB1C1和直角三角和直角三角 形形ABC有什么关系有什么关系?(2)和和 ,和和 ,和和 有什么关系有什么关系?(3)如果梯子的倾斜角不变,如果梯子的倾斜角不变,只改变只改变B在梯子上的位置呢在梯子上的位置呢?BCAB111B CABACAB11ACAB111B CACBCAC AB1 C1 CB想一想想一想(1)

    6、直角三角形直角三角形AB1C1和直角三角和直角三角 形形ABC有什么关系有什么关系?(2)和和 ,和和 ,和和 有什么关系有什么关系?(3)如果梯子的倾斜角不变,如果梯子的倾斜角不变,只改变只改变B在梯子上的位置呢在梯子上的位置呢?BCAB111B CABACAB11ACAB111B CACBCAC AB1 C1 CB想一想想一想(1)直角三角形直角三角形AB1C1和直角三角和直角三角 形形ABC有什么关系有什么关系?(2)和和 ,和和 ,和和 有什么关系有什么关系?(3)如果梯子的倾斜角不变,如果梯子的倾斜角不变,只改变只改变B在梯子上的位置呢在梯子上的位置呢?BCAB111B CABACA

    7、B11ACAB111B CACBCAC AB1 C1 CB想一想想一想(1)直角三角形直角三角形AB1C1和直角三角和直角三角 形形ABC有什么关系有什么关系?(2)和和 ,和和 ,和和 有什么关系有什么关系?(3)如果梯子的倾斜角不变,如果梯子的倾斜角不变,只改变只改变B在梯子上的位置呢在梯子上的位置呢?BCAB111B CABACAB11ACAB111B CACBCAC 结论:由相似三角形的性质得,只要结论:由相似三角形的性质得,只要A不变,那不变,那么都有:么都有:BCAB111B CABACAB11ACABBCAC111B CAC=ABB1CC1 即在直角三角形中,当锐角即在直角三角形

    8、中,当锐角A取一定度数时,不管三角形的大取一定度数时,不管三角形的大小如何,小如何,A的对边与斜边的比是的对边与斜边的比是一个固定值,叫做一个固定值,叫做A的正弦,记的正弦,记作作sinA;邻边与斜边的比是一个;邻边与斜边的比是一个固定值,叫做固定值,叫做A的余弦,记作的余弦,记作cosA;对边与邻边的比是一个固;对边与邻边的比是一个固定值,叫做定值,叫做A的正切,记作的正切,记作tanA。AB CAA的的对边对边AA的的邻边邻边AA的的对边对边AA的的邻边邻边tanAcosAAA的邻边的邻边AA的对边的对边斜边斜边sinA斜边斜边斜边斜边1。锐角锐角A A的正弦、余弦、和正切叫做的正弦、余弦

    9、、和正切叫做A A的的锐角锐角三角函数三角函数2。锐角的锐角的三角函数三角函数的值都是正实数,并且的值都是正实数,并且 0sin 1 1,0cos1,定定义义注意:注意:三角函数的定义,必须在三角函数的定义,必须在直角三角形中直角三角形中.AB C例例1 如图如图,在在RtABC中中,C=90C=90AB=5,BC=3,求求A,B的正弦的正弦,余弦和正切余弦和正切.观察以上计算结果观察以上计算结果,你发现了什么你发现了什么?若若AC=5,BC=3呢呢?解:在解:在RtABC中中,4352222BCABAC因此因此43tan54cos53sinAAA34tan53cos54sinBBB1tant

    10、ansincoscossinBABABA例例2 2 如图如图:在在RtRtABCABC中中,B=90,B=900 0,AC=200,sinA=0.6.,AC=200,sinA=0.6.求求:BC:BC的长的长.200ACB解:解:12060200sinsinAACBCACBCA1.1.如图如图:在等腰在等腰ABCABC中中,AB=AC=5,BC=6.,AB=AC=5,BC=6.求求:sinB,cosB,tanB.:sinB,cosB,tanB.解:过点解:过点A作作AD垂直于垂直于BC于于D.556ABCDAB=AC=5 BD=1/2BC=3在在RtABD中中4352222BDABAD34ta

    11、n,53cos,54sinBBB.54sinA2.2.在在RtRtABCABC中中,C=90,C=900 0,BC=20,BC=20,求求:ABC的周长的周长.ABC解:解:152025255420sinsin2222BCABACABCABABBCA因此,因此,ABC的周长的周长=25+20+15=60w3.如图,在RtABC中,锐角A的对边和邻边同时扩大100倍,sinA的值()wA.扩大100倍 B.缩小100倍 wC.不变 D.不能确定w4.已知A,B为锐角w(1)若A=B,则sinA sinB;w(2)若sinA=sinB,则A B.ABCC=5.5.如图,C=90C=90CDAB.C

    12、DAB.6.在上图中,若BD=6,CD=12.求cosA的值.ACBD.sinB()()()()()()w7.7.如图,分别根据图(1)和图(2)求A的三个三角函数值.w8.在在RtRtABCABC中中,C=90C=90,(1)AC=3,AB=6,(1)AC=3,AB=6,求求sinAsinA和和cosBcosB(2)BC=3,sinA=,(2)BC=3,sinA=,求求ACAC和和ABAB.w老师提示:w求锐角三角函数时,勾股定理的运用是很重要的.ACB34ACB34(1)(2)135谈谈今天的收获谈谈今天的收获 AB CAA的的对边对边AA的的邻边邻边AA的的对边对边AA的的邻边邻边tan

    13、AcosAAA的邻边的邻边AA的对边的对边斜边斜边sinA斜边斜边斜边斜边定定义义回味无穷 定义定义中应该注意的几个问题中应该注意的几个问题:w 1.sinA,cosA,tanA,1.sinA,cosA,tanA,是在直角三角形中定义的是在直角三角形中定义的,AA是锐角是锐角(注意数形结合注意数形结合,构造直角三角形构造直角三角形).).w 2.sinA,cosA,tanA,2.sinA,cosA,tanA,是一个完整的符号是一个完整的符号,表示表示A Aw 的正切的正切,习惯省去习惯省去“”“”号;号;w 3.sinA,cosA,tanA,3.sinA,cosA,tanA,是一个比值是一个比

    14、值.注意比的顺序注意比的顺序,w 且且sinA,cosA,tanA,sinA,cosA,tanA,均均0,0,无单位无单位.w 4.sinA,cosA,tanA,4.sinA,cosA,tanA,的大小只与的大小只与A A的大小有关的大小有关,w 而与直角三角形的边长无关而与直角三角形的边长无关.w 5.5.角相等角相等,则其三角函数值相等;两锐角的三角函则其三角函数值相等;两锐角的三角函数值相等数值相等,则这两个锐角相等则这两个锐角相等.1.1.书本作业题书本作业题2.2.同步练习同步练习人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,培养逻辑思维能力;通过阅读文学作品,我们能提高文学鉴赏水平,培养文学情趣;通过阅读报刊,我们能增长见识,扩大自己的知识面。有许多书籍还能培养我们的道德情操,给我们巨大的精神力量,鼓舞我们前进。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:新人教版九年级下281锐角三角函数1课件教程.ppt
    链接地址:https://www.163wenku.com/p-4588519.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库