数学建模MATLAB之线性规划课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模MATLAB之线性规划课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 MATLAB 线性规划 课件
- 资源描述:
-
1、 线性规划线性规划数学建模与数学实验数学建模与数学实验1PPT学习交流实验目的实验目的实验内容实验内容2.掌握用数学软件包求解线性规划问题掌握用数学软件包求解线性规划问题.1.了解线性规划的基本内容了解线性规划的基本内容.2.用数学软件包用数学软件包MATLAB求解线性规划问题求解线性规划问题.5.实验作业实验作业.3.用数学软件包用数学软件包LINDO、LINGO求解线性规划问题求解线性规划问题.1.两个引例两个引例.4.建模案例:投资的收益与风险建模案例:投资的收益与风险.2PPT学习交流问题一问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件.假定这两台车床的可用台时数分别
2、为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表.问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?单位工件所需加工台时数 单位工件的加工费用 车床类 型 工件1 工件2 工件3 工件1 工件2 工件3 可用台时数 甲 0.4 1.1 1.0 13 9 10 800 乙 0.5 1.2 1.3 11 12 8 900 两个引例两个引例3PPT学习交流解解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6,可建立以下线性规划模型
3、:解答4PPT学习交流问题二:问题二:某厂每日8小时的产量不低于1800件.为了进行质量控制,计划聘请两种不同水平的检验员.一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检验员每错检一次,工厂要损失2元.为使总检验费用最省,该工厂应聘一级、二级检验员各几名?解解 设需要一级和二级检验员的人数分别为x1、x2人,则应付检验员的工资为:212124323848xxxx因检验员错检而造成的损失为:21211282)%5158%2258(xxxx5PPT学习交流故目标函数为:故目标函数为:21212136
4、40)128()2432(minxxxxxxz约束条件为:0,0180015818002581800158258212121xxxxxx6PPT学习交流线性规划模型:线性规划模型:213640minxxz12121253459s.t.150,0 xxxxxx 解答返 回7PPT学习交流线性规划模型的一般形式线性规划模型的一般形式11min,1,2,.,.s.t.0,1,2,.,.ni iinik kikiucxa xb inxin 目标函数和所有的约束条件都是设计变量目标函数和所有的约束条件都是设计变量的线性函数的线性函数.min.s.tucxAxbvlbxvub矩矩阵阵形形式式:8PPT学习
5、交流实际问题中实际问题中的优化模型的优化模型T1min(max)(),(,)s.t.()0,1,2,nizf xxxxg xim或x是决策变量是决策变量f(x)是目标函数是目标函数gi(x)0是约束条件是约束条件数学规划数学规划线性规划线性规划(LP)二次规划二次规划(QP)非线性规划非线性规划(NLP)纯整数规划纯整数规划(PIP)混合整数规划混合整数规划(MIP)整数规划整数规划(IP)0-1整数规划整数规划一般整数规划一般整数规划连续规划连续规划 优化模型的分类优化模型的分类9PPT学习交流用用MATLAB优化工具箱解线性规划优化工具箱解线性规划min z=cX s.t.AXb1.模型:
6、命令:x=linprog(c,A,b)2.模型:min z=cX s.t.AXbbeqXAeq命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A=,b=.bAX 10PPT学习交流3.模型:min z=cX s.t.AXbbeqXAeqVLBXVUB命令:1 x=linprog(c,A,b,Aeq,beq,VLB,VUB)2 x=linprog(c,A,b,Aeq,beq,VLB,VUB,X0)注意:1 若没有等式约束:,则令Aeq=,beq=.2其中X0表示初始点 beqXAeq4.命令:x,fval=linprog()返回最优解及处的目标函数值fval.
7、11PPT学习交流解解 编写编写M文件文件xxgh1.m如下:如下:c=-0.4-0.28-0.32-0.72-0.64-0.6;A=0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08;b=850;700;100;900;Aeq=;beq=;vlb=0;0;0;0;0;0;vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To MATLAB(xxgh1)12PPT学习交流解解:编写编写M文件文件xxgh2.m如下:如下:c=6 3 4;A=0 1
8、 0;b=50;Aeq=1 1 1;beq=120;vlb=30,0,20;vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To MATLAB(xxgh2)123m in(634)xzxx32120030 xxx1231111 2 0s.t.0105 0 xxx13PPT学习交流s.t.Xz8121110913min 9008003.12.15.000000011.14.0X改写为:例例3 问题一的解答 问题问题14PPT学习交流编写编写M文件文件xxgh3.m如下如下:f=13 9 10 11 12 8;A=0.4 1.1 1 0 0 0 0 0 0 0.
9、5 1.2 1.3;b=800;900;Aeq=1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1;beq=400 600 500;vlb=zeros(6,1);vub=;x,fval=linprog(f,A,b,Aeq,beq,vlb,vub)To MATLAB(xxgh3)15PPT学习交流结果结果:x=0.0000 600.0000 0.0000 400.0000 0.0000 500.0000fval=1.3800e+004 即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800.16PPT学习交
10、流例例2 问题二的解答 问题问题 213640minxxz s.t.)45(3521xx改写为:17PPT学习交流编写编写M文件文件xxgh4.m如下:如下:c=40;36;A=-5-3;b=-45;Aeq=;beq=;vlb=zeros(2,1);vub=9;15;%调用linprog函数:x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To MATLAB(xxgh4)18PPT学习交流结果为:结果为:x=9.0000 0.0000fval=360即只需聘用9个一级检验员.注:注:本问题应还有一个约束条件:x1、x2取整数.故它是一个整数线性规划整数线性规划问题.这
11、里把它当成一个线性规划来解,求得其最优解刚好是整数:x1=9,x2=0,故它就是该整数规划的最优解.若用线性规划解法求得的最优解不是整数,将其取整后不一定是相应整数规划的最优解,这样的整数规划应用专门的方法求解.返 回19PPT学习交流用用LINDO、LINGO优化工具箱解线性规划优化工具箱解线性规划20PPT学习交流一、一、LINDOLINDO软件包软件包 下面我们通过一个例题来说明下面我们通过一个例题来说明LINDO软件包的使用方法软件包的使用方法.21PPT学习交流LINDOLINDO和和LINGOLINGO软件能求解的优化模型软件能求解的优化模型 LINGO LINDO优化模型优化模型
展开阅读全文