数值计算方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数值计算方法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 计算方法 课件
- 资源描述:
-
1、华长生制作1iiijjijiilxlbx11nnnnnnaaaaaaaaaA212222111211bAx ni,3,2第二章 插值与逼近 2.9 数据拟合数据拟合(最小二乘法最小二乘法)华长生制作2 2.9 数据拟合数据拟合(最小二乘法最小二乘法)实例:考察某种纤维的强度与其拉伸倍数的关系,下表是实际测定的24个纤维样品的强度与相应的拉伸倍数是记录:编 号 拉伸倍数 强 度编 号 拉伸倍数 强 度11.91.41355.5221.3145.2532.11.81565.542.52.5166.36.452.72.8176.5662.72.5187.15.373.531986.583.52.72
2、087944218.98.51043.52298114.54.2239.58.1124.63.524108.1iiyxiiyx华长生制作31234567891012345678912345678910123456789纤维强度随拉伸倍数增加而增加系要关系应是线性关的主与拉伸倍数因此可以认为强度xy并且24个点大致分布在一条直线附近xxy10)(为待定参数其中10,-(1)华长生制作4越接近越好样本点与所有的数据点我们希望),)()(10iiyxxxy必须找到一种度量标准来衡量什么曲线最接近所有数据点一、最小二乘法的基本概念iiiyxy)(令一般使用mii0222在回归分析中称为残差miiiyx
3、y02)(准偏离程度大小的度量标与数据点作为衡量),()(iiyxxy称为平方误差华长生制作5在回归分析中称为残差平方和从而确定(1)中的待定系数mii0222miiiyxy02)(注意(1)式是一条直线关系的关系并不一定是线性但yx,因此将问题一般化华长生制作6)(,xSyyx的关系为设来自函数类其中)(xS来自线性函数类中如)()1(xy为给定的一组数据设),1,0)(,(miyxii),1,0)(nixi的基函数为设函数类mn 一般要求即生成的函数集是由也称,),1,0)(nixi)(,),(),(10 xxxspannmii0222miiiyxS02)(仍然定义平方误差njjjxaxS
4、0)()(华长生制作7我们选取的度量标准是)(*xS中选取一个函数在函数类njjjxaxS0*)()(*)(*)(*)(*1100 xaxaxann22*miiiyxS02)(*(miiixSyxS02)()(min22)(minxS中的任意函数为其中mjjjxaxS0)()(-(2)-(3)华长生制作8数据拟合的最小二乘法的方法为的求函数称满足条件njjjxaxS0*)()(*)3(为最小二乘解njjjxaxS0*)()(*为拟合系数为拟合函数),1,0(,)()(0njaxaxSjnjjj),1,0(,)(njaxSj如何求拟合系数后在确定了拟合函数呢?满足拟合条件使得)3()()(*0*
5、njjjxaxS误差称为最小二乘解的平方22*华长生制作9 miinjijjyxa020)(miiiyxS02)(二、法方程组22njjjxaxS0)()(由的函数为拟合系数),1,0(njaj可知因此可假设),(10naaa miinjijjyxa020)(因此求最小二乘解转化为二次函数华长生制作10的问题点极小值的最小值求*,*,*,)(),(1010nnaaaaaa由多元函数取极值的必要条件0),(10knaaaank,1,0)()(200ikmiinjijjxyxaka0得即miikimiiknjijjxyxxa000)()()(0)()()(00 ikmiinjikijjxyxxa华
6、长生制作11miikimiiknjijjxyxxa000)()()(miikinjjikmiijxyaxx000)()()(nk,1,0-(4)miikiikmiinnikmiiikmiixyxxaxxaxxa00011000)()()()()()()(nk,1,0即华长生制作12元线性方程组的是一个关于显然1,)4(10naaan引入记号)(,),(),(10mrrrxxxr),(10myyyf)()(),(0ijmiikjkxx则由内积的概念可知imiikkyxf0)(),(-(5)-(6),(jk),(kj显然内积满足交换律华长生制作13方程组(4)便可化为),(),(),(),(110
7、0faaaknknkknk,1,0-(7)的线性方程组常数项为这是一个系数为),(),(fkjk将其表示成矩阵形式naaa10),(),(),(10fffn),(),(),(01000n),(),(),(11101n),(),(),(10nnnn-(8)华长生制作14上的法方程组在点式为函数序列称mnxxxxxx,)(,),(),()8(1010的基为函数类由于)(,),(),(10 xxxn必然线性无关因此)(,),(),(10 xxxn并且其系数矩阵为对称阵所以法方程组的系数矩阵非奇异,即0),det(nnji根据Cramer法则,法方程组有唯一解*,*,*,1100nnaaaaaa华长生
8、制作15*),*,*,(10naaa miinjijjyxa020)(),(10naaa即是的最小值22*miiiyxS02)(*(miiixSyxS02)()(min22)(minxS所以 miinjijjyxa020)(*(miinjijjxSyxa020)()(min miinjijjyxa020)(*(为最小二乘解njjjxaxS0*)()(*因此华长生制作16的拟合函数作为常使用多项式),1,0)(,()()(miyxxPxSiin作为一种简单的情况,的基函数为拟合函数)()(xPxSn,1)(0 x,)(1xx,)(,kkxx nnxx)(基函数之间的内积为)()(),(0ijmi
9、ikjkxxmijikixx0mijkix0imiikkyxf0)(),(miikiyx022*平方误差miiiyxS02)(*(njjjfaff0),(*),(华长生制作17例1.回到本节开始的实例,从散点图可以看出纤维强度和拉伸倍数之间近似与线性关系xaaxy10)(故可选取线性函数为拟合函数,其基函数为1)(0 xxx)(1建立法方程组根据内积公式,可得华长生制作1824),(005.127),(1061.829),(111.113),(0f6.731),(1f法方程组为61.8295.1275.1272410aa6.7311.1131505.00a即为所求的最小二乘解xxy8587.0
10、1505.0)(*8587.01a解得6615.5*22平方误差为华长生制作191234567891012345678912345678910123456789拟合曲线与散点的关系如右图:华长生制作20例2.求拟合下列数据的最小二乘解x=.24.65.95 1.24 1.73 2.01 2.23 2.52 2.77 2.99y=.23-.26-1.10-.45.27.10-.29.24.56 1解:从数据的散点图可以看出xxycos之间具有三角函数关系与xexy系之间还具有指数函数关与xxyln系之间还具有对数函数关与因此假设拟合函数与基函数分别为xcexbxaxScosln)(xex)(2x
11、xln)(0 xxcos)(1华长生制作2100.511.522.53-1.5-1-0.500.51xy6.7941 -5.3475 63.2589-5.3475 5.1084 -49.008663.2589-49.0086 1002.5 1.6163-2.382726.7728通过计算,得法方程组的系数矩阵及常数项矩阵为00.511.522.53-1.5-1-0.500.51xyGo!Go!华长生制作22用Gauss列主元消去法,得cba -1.0410 -1.2613 0.030735xexxxS030735.0cos2613.1ln0410.1)(*的最小二乘解是关于xy22*20)(*
展开阅读全文