差式扫描量热法DSC课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《差式扫描量热法DSC课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 扫描 量热法 DSC 课件
- 资源描述:
-
1、第六章第六章 差示扫描量热法差示扫描量热法(Differential Scanning Calorimeter,DSC)第七章第七章 差示扫描量热法(差示扫描量热法(DSC)7.1 DSC基本原理基本原理7.2 DSC实验技术实验技术7.3 DSC在聚合物中的应用在聚合物中的应用7.1 DSC7.1 DSC基本原理基本原理差示扫描量热仪的基本结构差示扫描量热仪的基本结构 DSC是测量输入到试样和参是测量输入到试样和参比物的热流量差或功率差与比物的热流量差或功率差与温度或时间的关系。温度或时间的关系。提供物理、化学变化过程中有关的提供物理、化学变化过程中有关的吸热、放热、热容吸热、放热、热容变化
2、变化等定量或定性的信息。等定量或定性的信息。参比参比样品样品动态零位平衡原理动态零位平衡原理样品与参比物温度,不论样品是吸热还是放热,样品与参比物温度,不论样品是吸热还是放热,两者的温度差都趋向零。两者的温度差都趋向零。T=0dtdHdtdQdtdQdtdHdtdQdtdQWrsrs-单位时间给样品的热量单位时间给样品的热量-单位时间给参比物的热量单位时间给参比物的热量-热焓变化率热焓变化率DSCDSC测定的是维持样品与参测定的是维持样品与参比物处于相同温度所需要比物处于相同温度所需要的能量差的能量差W(),反映反映了了样品热焓的变化样品热焓的变化。dTdH以以 作图分析作图分析一般在一般在D
3、SC热谱图中,吸热热谱图中,吸热(endothermic)效应用凸起的峰效应用凸起的峰值来表征值来表征(热焓增加热焓增加),放热,放热(exothermic)效应用反向的峰值效应用反向的峰值表征表征(热焓减少热焓减少)。DSCDSC曲线曲线PET热焓变化率,热焓变化率,热流率热流率(heat flowing),单位为毫瓦(单位为毫瓦(mW)dtdH吸收热量,样品热容增加,吸收热量,样品热容增加,基线发生位移基线发生位移结晶,放出热量,放热峰;结晶,放出热量,放热峰;晶体熔融,吸热,吸热峰晶体熔融,吸热,吸热峰endoexoExoEndodH/dt(mW)Temperature Glass Tr
4、ansitionCrystallizationMeltingDecomposition玻璃化转变玻璃化转变结晶结晶基线基线放热行为放热行为(固化,氧化,反应,交联)(固化,氧化,反应,交联)熔融熔融分解气化分解气化TdTgTcTmDSC典型典型综合综合图谱图谱ExoEndo无定形态无定形态半结晶态半结晶态结晶态结晶态三种聚集态高分子材料三种聚集态高分子材料DSC典型图谱典型图谱endo7.3 DSC 7.3 DSC 实验技术实验技术1.1.试样的制备试样的制备 样品皿样品皿 :铝皿(盖、皿)铝皿(盖、皿)装样装样 :样品均匀平铺皿底,加盖冲压而成样品均匀平铺皿底,加盖冲压而成测试温度:测试温度
5、:500500参比参比 :空铝皿空铝皿,无需参比物,无需参比物固态、液态、粘稠样品都可以测定,气体除外。固态、液态、粘稠样品都可以测定,气体除外。测定前需充分干燥。测定前需充分干燥。升温速率对峰位置的影响升温速率对峰位置的影响T吸热吸热20/min2.2.主要影响因素主要影响因素 样品量:样品量:升温速率:升温速率:气氛:气氛:气流气流:5/min-分辨率低分辨率低-灵敏度低灵敏度低10mg2.5mg样品量对峰位置的影响样品量对峰位置的影响5-10mg520/min N2 20-50mL/min同类样品相同类样品相比,采用相比,采用相同的量。同的量。升温速率越升温速率越快,分辨率快,分辨率下降
6、,温度下降,温度滞后。滞后。3.3.熔点(熔点(TmTm)和玻璃化转变温度()和玻璃化转变温度(TgTg)的确定)的确定 注意:样品升温速率和注意:样品升温速率和样品量不同对峰温的影样品量不同对峰温的影响。响。同系列的样品比较要读取同系列的样品比较要读取相同点的温度作比较相同点的温度作比较结晶聚合物的热转变温度结晶聚合物的热转变温度ATm:峰顶峰顶Aendo无定形聚合物的热转变温度无定形聚合物的热转变温度Tg:中点中点C或交点或交点DendoDDD7.4 DSC7.4 DSC在聚合物中的在聚合物中的应用应用1.1.聚合物玻璃化转变的研究聚合物玻璃化转变的研究2.2.聚合物熔融聚合物熔融/结晶转
7、变的研究结晶转变的研究3.3.两相聚合材料结构特征的研究两相聚合材料结构特征的研究4.4.聚合物的化学转变的研究聚合物的化学转变的研究5.5.用用DSCDSC曲线确定加工条件曲线确定加工条件7.4 DSC 7.4 DSC 应应 用用1.1.聚合物玻璃化转变的研究聚合物玻璃化转变的研究聚合物非晶部分,在玻璃化转变温度一下,分子运动基本冻结,聚合物非晶部分,在玻璃化转变温度一下,分子运动基本冻结,Tg以后,运动活跃,热容量变大,基线向吸热一侧偏移。以后,运动活跃,热容量变大,基线向吸热一侧偏移。d Q/dtd Q/dt温度温度温度温度TgTga.化学结构对化学结构对Tg的影响的影响b.相对分子质量
8、对相对分子质量对Tg的影响的影响c.结晶度对结晶度对Tg的影响的影响d.交联固化对交联固化对Tg的影响的影响e.样品热历史效应对样品热历史效应对Tg的影响的影响g.形态历史对形态历史对Tg的影响的影响f.应力历史对应力历史对Tg的影响的影响侧基柔性对聚甲基丙烯酸酯类Tg的影响-100-50050100150123456nTga.化学结构对化学结构对Tg的影响的影响具有僵硬的主链或带有大的侧基的聚合物,较高具有僵硬的主链或带有大的侧基的聚合物,较高Tg链间具有强吸引力的高分子,不易膨胀,较高链间具有强吸引力的高分子,不易膨胀,较高Tg分子链上挂有松散的侧基,增加了自由体积,分子链上挂有松散的侧基
9、,增加了自由体积,Tg降低降低聚合物聚合物Tg/C聚乙烯聚乙烯-68聚丙烯聚丙烯-10聚氯乙烯聚氯乙烯87聚苯乙烯聚苯乙烯100聚苯醚聚苯醚220H2CCCH3COO CnH2n+1nb.相对分子质量对相对分子质量对Tg的影响的影响随分子量增加,一般随分子量增加,一般TgTg增高增高相对分子量超过一定程度后,相对分子量超过一定程度后,TgTg不再明显增加不再明显增加几个级分聚甲基丙烯酸对叔丁基酯几个级分聚甲基丙烯酸对叔丁基酯(BPh)和聚甲基丙烯酸对丁基环己酯)和聚甲基丙烯酸对丁基环己酯(BCy)的玻璃化转变温度与重均分子)的玻璃化转变温度与重均分子量的关系量的关系相对分子量越高,活动相对分子
10、量越高,活动能力较高的端基链段比能力较高的端基链段比例越低,例越低,Tg越高。越高。Tg/oC410WM对于玻璃化转变不明显的样品,可通过如下方法增大其效应:对于玻璃化转变不明显的样品,可通过如下方法增大其效应:对样品预升温至熔融后进行淬冷,增加无定性成分比例。对样品预升温至熔融后进行淬冷,增加无定性成分比例。加大样品用量与升温速率。加大样品用量与升温速率。样品的无定形比例越大(结晶度越低),玻璃化转变样品的无定形比例越大(结晶度越低),玻璃化转变台阶越明显。台阶越明显。c.结晶度对结晶度对TgTg的影响的影响不同聚合物随结晶度的提高对不同聚合物随结晶度的提高对TgTg有不同影响有不同影响聚合
11、物聚合物结晶度增结晶度增加加-TgTg变变化化原因原因PETPET增加增加结晶增加,增加无定形分子链运动的阻结晶增加,增加无定形分子链运动的阻力。力。IPSIPSPCLPCLIPMMAIPMMA聚聚4-4-甲基甲基戊烯戊烯-1-1降低降低提高结晶使提高结晶使“低低TgTg”等规部分增加,等规部分增加,“高高TgTg”间规部分减少。间规部分减少。IPPIPP不变不变结晶度的提高并不影响该聚合物无定形结晶度的提高并不影响该聚合物无定形部分软硬程度。部分软硬程度。F3F3d.交联固化对交联固化对TgTg的影响的影响聚合物交联一般引起聚合物交联一般引起TgTg的升高的升高固化温度固化温度410以下,固
12、化温度升高,以下,固化温度升高,交联度增加,使交联度增加,使Tg升高;升高;410以上,以上,Tg下降,可能由下降,可能由于高温裂解,使交联密度降低,于高温裂解,使交联密度降低,致使致使 Tg降低。降低。e.样品热历史效应对样品热历史效应对Tg的影响的影响制备样品升温速率应与样品加工时的冷却速率相同制备样品升温速率应与样品加工时的冷却速率相同放热峰放热峰吸热吸热“滞后峰滞后峰”峰峰标准玻璃化转变标准玻璃化转变测试加热速率制样冷却速率测试加热速率制样冷却速率冷却速率小,样品冷却均匀。冷却速率小,样品冷却均匀。若受热太快,外部软化,内若受热太快,外部软化,内部仍是玻璃态,当温度达到部仍是玻璃态,当
13、温度达到 Tg,链运动使自由体积突,链运动使自由体积突然增加,内部大量吸热,出然增加,内部大量吸热,出现吸热峰。现吸热峰。制样冷却速率很快的情况下,制样冷却速率很快的情况下,分子链中的不稳定构象被冻分子链中的不稳定构象被冻结。随温度升高,在低于结。随温度升高,在低于Tg时,由于局部的不稳定构象时,由于局部的不稳定构象向稳定构象转变,故出现放向稳定构象转变,故出现放热峰。热峰。测试加热速率测试加热速率制样冷却速率制样冷却速率不同制样压力不同制样压力PS的的DSC谱图谱图f.应力历史对应力历史对Tg的影响的影响随制样压力增加随制样压力增加Tg起始温度起始温度降低,结束温度不变,转变区降低,结束温度
14、不变,转变区加宽,加宽,Tg 减小。减小。储存在样品中的应力历史,在玻璃化转变区会以放热式膨储存在样品中的应力历史,在玻璃化转变区会以放热式膨胀的形式释放胀的形式释放放热峰放热峰在加压冷却情况下,分子链在加压冷却情况下,分子链中的不稳定构象被冻结。随中的不稳定构象被冻结。随温度升高,在低于温度升高,在低于Tg时,由时,由于局部的不稳定构象向稳定于局部的不稳定构象向稳定构象转变,故出现放热峰。构象转变,故出现放热峰。g.形态历史对形态历史对Tg的影响的影响368nm322nm86nm当样品的表面积与体积之比很大时,样品的形态与样品的当样品的表面积与体积之比很大时,样品的形态与样品的导热快慢有关。
展开阅读全文