浙江杭州2023届高三上学期教学质量检测数学试卷+答案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《浙江杭州2023届高三上学期教学质量检测数学试卷+答案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江杭州 2023 届高三 上学 教学质量 检测 数学试卷 答案 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、2022学年第一学期杭州市高三年级教学质量检测数学模拟卷全卷共4页,22题,满分150分;考试时间120分钟。一、单选题:本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中有且只有一项符合题意,多选、错选、不选均不得分。1. 若集合,满足:,则A. B. C. D. 2. 设,则“”是“函数在为减函数”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件3. 把本不同的书分给名同学,每个同学至少一本,则不同的分发数为A. 种B. 种C. 种D. 种4. 在平面直角坐标系中,、分别是双曲线的左、右焦点,过作渐近线的垂线,垂足为,与双曲线的右支交于点,且,
2、则双曲线的渐近线方程为A. B. C. D. 5. 在中,则的值为A. B. C. D. 6. 已知数列的前项和为,首项,且满足,则的值为A. B. C. D. 7. 的最小值是,则实数的取值范围是A. B. C. D. 8. 已知,函数满足:恒成立,其中是的导函数,则下列不等式中成立的是A. B. C. D. 二、多选题:本大题共4小题,每小题5分,共20分。在每小题列出的四个选项中有多项符合题意,选全得5分,漏选得2分,错选、不选均不得分。9. 已知,且,则()A. B. C. D. 10. 已知非零复数在复平面内对应的点分别为,为坐标原点,则()A. 当时,B. 当时,C. 若,则存在实
3、数,使得D. 若,则11. 定义平面斜坐标系,记,分别为轴、轴正方向上的单位向量若平面上任意一点的坐标满足:,则记向量的坐标为,给出下列四个命题,正确的选项是A. 若,则B. 若,以为圆心、半径为的圆的斜坐标方程为C. 若,则D. 若,记斜平面内直线的方程为,则在平面直角坐标系下点到直 线的距离为12. 已知椭圆的右顶点为,过右焦点的直线交椭圆于两点,设,的斜率分别记为,以下各式为定值的是A. B. C. D. 三、填空题:本大题共4小题,每小题5分,共20分。13. 已知随机变量服,且,则14. 已知公差为且各项均为正数的等差数列的前项和为,且,则的最小值为15. 已知圆:,圆:,定点,动点
4、分别在圆和圆上,满足,则线段的取值范围_16. 已知实数,满足,且,则的取值范围是四、解答题:本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17. (10分)的内角,的对边分别为,已知,若为边上一点,且,求若,为平面上一点,其中,求的最小值18. (12分)已知数列满足,记,在中每相邻两项之间都插入个数,使它们和原数列的数一起构成一个新的正项等比数列,若数列中的第项是数列中的第项求数列及的通项公式求数列的前项和19. (12分)如图所示,矩形是某生态农庄一块植物栽培基地的平面图,现欲修一条笔直的小路宽度不计经过该区域,其中都在矩形的边界上已知,单位:百米,小路将矩形分成面积
5、分别为,单位:平方百米的两部分,其中,且点在面积为的区域内,记长为百米若,求的最大值;若,求的取值范围20. (12分)从年底开始,非洲东部的肯尼亚等国家爆发出了一场严重的蝗虫灾情目前,蝗虫已抵达乌干达和坦桑尼亚,并向西亚和南亚等地区蔓延蝗虫危害大,主要危害禾本科植物,能对农作物造成严重伤害,每只蝗虫的平均产卵数和平均温度有关,现收集了以往某地的组数据,得到下面的散点图及一些统计量的值平均温度平均产卵数个表中,根据散点图判断,与其中,为自然对数的底数哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?给出判断即可,不必说明理由并由判断结果及表中数据,求出关于的回归方程精确到小数点后第三位根据
6、以往统计,该地每年平均温度达到以上时蝗虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到以上的概率为记该地今后年中,恰好需要次人工防治的概率为,求取得最大值时相应的概率;根据中的结论,当取最大值时,记该地今后年中,需要人工防治的次数为,求的数学期望和方差附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为,21. (12分)已知抛物线:经过点,过点的直线与抛物线有两个不同的交点,且直线交轴于,直线交轴于 求直线的斜率的取值范围; 设为原点,求证:为定值22. (12分)已知函数当时,讨论函数的单调性; 当时,探究关于的方程的实数根的个数2022学年第一学
7、期杭州市教学质量检测数学模拟卷参考答案一、单选题:本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中有且只有一项符合题意,多选、错选、不选均不得分。1. 2. 3. 4. 5. 6. 7. 8. A二、多选题:本大题共4小题,每小题5分,共20分。在每小题列出的四个选项中有多项符合题意,选全得5分,漏选得2分,错选、不选均不得分。9. 10. 11. 12. 三、填空题:本大题共4小题,每小题5分,共20分。13. 14. 15. 16. 四、解答题:本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17. 解:由可得,即,因为,所以,因为,所以由可得,则,因为,所
8、以,在中,由正弦定理可得,即,解得由余弦定理可得,解得记,则点在线段上且为的中点,记的中点为,边上的高为,则,所以的最小值为18. 解:因为,所以,因为,所以,所以是首项为,公比为的等比数列,所以所以由题意知,所以,即,又,则所以又,则,则, , 得,所以19. 解:依题意,折痕有下列三种情形:折痕的端点,分别在边,上;折痕的端点,分别在边,上;折痕的端点,分别在边,上在情形、中,故当时,折痕必定是情形设,则因为,当且仅当时取等号,所以,当且仅当时取等号即的最大值为 由题意知,长方形的面积为因为,所以,()当折痕是情形时,设,则,即由得所以,令,则,设,则,令,得负舍所以的取值范围为,故的取值
展开阅读全文