书签 分享 收藏 举报 版权申诉 / 36
上传文档赚钱

类型ApacheKylin在大数据系统中应用课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4568913
  • 上传时间:2022-12-20
  • 格式:PPT
  • 页数:36
  • 大小:2.95MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《ApacheKylin在大数据系统中应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    ApacheKylin 数据 系统 应用 课件
    资源描述:

    1、Apache KylinOLAP on Hadoophttp:/kylin.ioAgendaWhats Apache Kylin?Tech HighlightsPerformanceRoadmapQ&AExtreme OLAP Engine for Big DataKylin is an open source Distributed Analytics Engine from eBay thatprovides SQL interface and multi-dimensional analysis(OLAP)onHadoop supporting extremely large datas

    2、etsWhats Kylinkylin /kiln/麒麟-n.(in Chinese art)a mythical animal of composite form Open Sourced on Oct 1st,2014 Be accepted as Apache Incubator Project on Nov 25th,2014Big Data EraMore and more data becoming available on HadoopLimitations in existing Business Intelligence(BI)ToolsLimited support for

    3、 HadoopData size growing exponentiallyHigh latency of interactive queriesScale-Up architectureChallenges to adopt Hadoop as interactive analysis systemMajority of analyst groups are SQL savvyNo mature SQL interface on HadoopOLAP capability on Hadoop ecosystem not ready yet5Why notBuild an engine fro

    4、m scratch?Extreme Scale OLAP EngineKylin is designed to query 10+billions of rows on HadoopANSI SQL Interface on HadoopKylin offers ANSI SQL on Hadoop and supports most ANSI SQL query functionsSeamless Integration with BI ToolsKylin currently offers integration capability with BI Tools like Tableau.

    5、Interactive Query CapabilityUsers can interact with Hive tables at sub-second latencyMOLAP CubeDefine a data model from Hive tables and pre-build in KylinScale Out ArchitectureQuery server cluster supports thousands concurrent users and provide high availabilityFeatures HighlightsCompression and Enc

    6、oding SupportIncremental Refresh of CubesApproximate Query Capability for distinct count(HyperLogLog)Leverage HBase Coprocessor for query latencyJob Management and MonitoringEasy Web interface to manage,build,monitor and query cubesSecurity capability to set ACL at Cube/Project LevelSupport LDAP Int

    7、egrationFeatures HighlightsCube DesignerJob ManagementQuery and VisualizationTableau IntegrationCaseCubeSizeRawRecordsUserSessionAnalysis26TB28+billionrowsClassifiedTrafficAnalysis21TB20+billionrowsGeoXBehaviorAnalysis560GB1.2+billionrowseBay90%query 5 secondsBaiduBaidu Map internal analysisMany oth

    8、er Proof of ConceptsBloomberg Law,British GAS,JD,Microsoft,StubHub,Tableau Who are using Kylinhttp:/kylin.ioAgendaWhats Apache Kylin?Tech HighlightsPerformanceRoadmapQ&AOLAPCubeKylin Architecture Overview15SQL-Based Tool(BI Tools:Tableau)JDBC/ODBCSQL Online AnalysisData Flow Offline Data Flow Client

    9、s/Users interactive withKylin via SQL OLAP Cube is transparent tousersMid Latency-MinutesHadoopHiveStar Schema DataLow Latency-SecondsDataCube(HBase)Key Value Data3rd Party App(Web App,Mobile)REST APISQLREST ServerQuery EngineRoutingMetadataCube Build Engine(MapReduce)Cube:Fact Table:Dimensions:Meas

    10、ures:Storage(HBase):DimDimDimFactSourceStar SchemaColumn FamilyRow Keyrow Arow Brow CColumnVal 1Val 2Val 3TargetHBase StorageMappingCube MetadataData ModelingEnd UserCube ModelerAdmintime,itemtime,item,locationtime,item,location,suppliertimeitemlocationsuppliertime,locationTime,supplieritem,location

    11、item,supplierlocation,suppliertime,item,suppliertime,location,supplieritem,location,supplier1-D cuboids2-D cuboids3-D cuboids4-D(base)cuboidBase vs.aggregate cells;ancestor vs.descendant cells;parent vs.child cells1.2.3.4.5.(9/15,milk,Urbana,Dairy_land)-(9/15,milk,Urbana,*)-(*,milk,Urbana,*)-(*,milk

    12、,Chicago,*)-(*,milk,*,*)-OLAP Cube Balance between Space and TimeCuboid=one combination of dimensionsCube=all combination of dimensions (all cuboids)0-D(apex)cuboidCube Build Job FlowHow To Store Cube?HBase SchemaDynamic data management framework.Formerly known as Optiq,Calcite is an Apache incubato

    13、r project,used byApache Drill and Apache Hive,among others.http:/optiq.incubator.apache.orgHow to Query Cube?Query Engine CalciteMetadata SPI Provide table schema from Kylin metadataOptimize Rule Translate the logic operator into Kylin operatorRelational Operator Find right cube Translate SQL into s

    14、torage engine API call Generate physical execute plan by linq4j java implementationResult Enumerator Translate storage engine result into java implementation result.SQL Function Add HyperLogLog for distinct count Implement date time related functions(i.e.Quarter)How to Query Cube?Kylin Extensions on

    15、 CalciteQuery Engine Kylin Explain PlanSELECT test_cal_dt.week_beg_dt,test_category.category_name,test_category.lvl2_name,test_category.lvl3_name,test_kylin_fact.lstg_format_name,test_sites.site_name,SUM(test_kylin_fact.price)AS GMV,COUNT(*)AS TRANS_CNTFROM test_kylin_factLEFT JOIN test_cal_dt ON te

    16、st_kylin_fact.cal_dt=test_cal_dt.cal_dtLEFT JOIN test_category ON test_kylin_fact.leaf_categ_id=test_category.leaf_categ_id AND test_kylin_fact.lstg_site_id=test_category.site_idLEFT JOIN test_sites ON test_kylin_fact.lstg_site_id=test_sites.site_idWHERE test_kylin_fact.seller_id=123456OR test_kylin

    17、_fact.lstg_format_name=NewGROUP BY test_cal_dt.week_beg_dt,test_category.category_name,test_category.lvl2_name,test_category.lvl3_name,test_kylin_fact.lstg_format_name,test_sites.site_nameOLAPToEnumerableConverterOLAPProjectRel(WEEK_BEG_DT=$0,category_name=$1,CATEG_LVL2_NAME=$2,CATEG_LVL3_NAME=$3,LS

    18、TG_FORMAT_NAME=$4,SITE_NAME=$5,GMV=CASE(=($7,0),null,$6),TRANS_CNT=$8)OLAPAggregateRel(group=0,1,2,3,4,5,agg#0=$SUM0($6),agg#1=COUNT($6),TRANS_CNT=COUNT()OLAPProjectRel(WEEK_BEG_DT=$13,category_name=$21,CATEG_LVL2_NAME=$15,CATEG_LVL3_NAME=$14,LSTG_FORMAT_NAME=$5,SITE_NAME=$23,PRICE=$0)OLAPFilterRel(

    19、condition=OR(=($3,123456),=($5,New)OLAPJoinRel(condition=($2,$25),joinType=left)OLAPJoinRel(condition=AND(=($6,$22),=($2,$17),joinType=left)OLAPJoinRel(condition=($4,$12),joinType=left)OLAPTableScan(table=DEFAULT,TEST_KYLIN_FACT,fields=0,1,2,3,4,5,6,7,8,9,10,11)OLAPTableScan(table=DEFAULT,TEST_CAL_D

    20、T,fields=0,1)OLAPTableScan(table=DEFAULT,test_category,fields=0,1,2,3,4,5,6,7,8)OLAPTableScan(table=DEFAULT,TEST_SITES,fields=0,1,2)Plugin-able storage engineCommon iterator interface for storage engineIsolate query engine from underline storageTranslate cube query into HBase table scanColumns,Group

    21、s Cuboid IDFilters-Scan Range(Row Key)Aggregations-Measure Columns(Row Values)Scan HBase table and translate HBase result into cube resultHBase Result(key+value)-Cube Result(dimensions+measures)How to Query Cube?Storage EngineCurse of dimensionality:N dimension cube has 2N cuboidFull Cube vs.Partial

    22、 CubeHugh data volumeDictionary EncodingIncremental BuildingHow to Optimize Cube?Cube OptimizationFull CubePre-aggregate all dimension combinations“Curse of dimensionality”:N dimension cube has 2N cuboid.Partial CubeTo avoid dimension explosion,we divide the dimensions intodifferent aggregation grou

    23、ps2N+M+L 2N+2M+2LFor cube with 30 dimensions,if we divide these dimensions into 3group,the cuboid number will reduce from 1 Billion to 3 Thousands230 210+210+210Tradeoff between online aggregation and offline pre-aggregationHow to Optimize Cube?Full Cube vs.Partial CubeHow to Optimize Cube?Partial C

    24、ubeData cube has lost of duplicated dimension valuesDictionary maps dimension values into IDs that will reduce the memory and storagefootprint.Dictionary is based on TrieHow to Optimize Cube?Dictionary EncodingHow to Optimize Cube?Incremental BuildCubeInvertedIndexStorageformatPre-aggregatedcuboidsS

    25、harding,columnarstorage,withinvertedindexonrowblocksQuerymethodCuboidscanningMassiveparallelprocessingStrengthPre-aggregatehugehistoricdatatosmallsummariesSwiftresponsetoreal-timedataWeaknessTaketimetobuildSlowatscanninglargedatavolumeStreaming,ongoing effortCube is great,butSometimes we want to dri

    26、ll down to row level informationCube takes time to build,how about real-time analysis?Streaming with inverted indexstreamingKarfkahourly/dailybatchminutes batchInvertedIndexReal-time StoreKylin 0.8,Lambda ArchitectureSQL QueryHybrid StorageInterfaceCubeHistoric Storehttp:/kylin.ioAgendaWhats Apache

    27、Kylin?Tech HighlightsPerformanceRoadmapQ&AKylin vs.Hive#QueryTypeReturn DatasetQueryOn Kylin(s)QueryOn Hive(s)Comments1High LevelAggregation40.129157.4371,217 times23Analysis QueryDrill Down toDetail22,669325,0291.61512.058109.206113.12368 times9 times4Drill Down toDetail524,78022.426383.21278 times

    28、5Data Dump972,00249.054N/A100500200150SQL#1SQL#2SQL#3HiveKylinHighLevelAggregationAnalysisQueryDrillDownto DetailLow LevelAggregationTransaction LevelBased on 12+B records casePerformance-ConcurrencyLinear scale out with more nodesPerformance-Query Latency90%queries 5sGreen Line:90%tile queriesGray

    29、Line:95%tile querieshttp:/kylin.ioAgendaWhats Apache Kylin?Tech HighlightsPerformanceRoadmapQ&AKylin Evolution Roadmap201520142013InitialPrototypefor MOLAP Basic end to endPOCMOLAP IncrementalRefresh ANSI SQL ODBC Driver Web GUI ACL Open SourceHOLAPNext Gen LambdaArch AutomationStreaming OLAP JDBC D

    30、riverNew GUI Excel Support moreCapacityManagementIn-MemoryAnalysis(TBD)Spark(TBD)moreTBDFutureSep,2013Jan,2014Sep,2014H1,2015Kylin Core Fundamental framework ofKylin OLAP EngineExtension Plugins to supportforadditionalfunctionsandfeaturesIntegration Lifecycle Management Supportto integrate with othe

    31、rapplicationsInterface Allows for thirdparty users tobuild more features via user-interface atop Kylin coreDriver ODBC and JDBC DriversKylin OLAPCoreExtension Security Redis Storage Spark Engine DockerInterface Web Console Customized BI Ambari/Hue PluginIntegration ODBC Driver ETL Drill SparkSQLKylin Ecosystem

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:ApacheKylin在大数据系统中应用课件.ppt
    链接地址:https://www.163wenku.com/p-4568913.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库