71分类加法计数原理与分步乘法计数原理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《71分类加法计数原理与分步乘法计数原理课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 71 分类 加法 计数 原理 分步 乘法 课件
- 资源描述:
-
1、7.1分类加法计数原理与分步乘法计数原理教 材 导 读基 础 自 测思 维 聚 焦合 作 学 习思 维 激 活课 时 测 评l 考点陪练l 1.用6种不同的颜色把图中A、B、C、D四块区域分开,允许同一色涂不同的区域,但相邻的区域不能涂同一色,则不同的涂法共有()l A400种 B460种l C480种 D496种l 解析:当区域A与D涂同一色时,有654120(种)涂法;当区域A与D涂不同颜色时,有6543360(种)涂法于是总共的涂法有120360480(种)l 答案:Cl 点评:本题是一道排列组合的应用题,考查计数原理的应用,在运用计数原理时,务必要分清是分类还是分步,是用乘法还是用加法
2、体现了解题时的分类讨论与程序化的思想l 2有A、B、C、D四人经常通电话交流信息,已知在通了三次电话后这四人都获悉某一条信息,那么第一个电话是A打出的情况共有()l A6种 B12种l C18种 D36种l 解析:第一次电话从A打出,打给B、C、D之一有C31种可能,打第二次电话时,可能从已知信息的两人之一打出有C21种可能,此时接收电话者是剩余二人中的一个有C21种可能,显然通知最后一个人时有C31种方法,故共有C31C21C21C3136(种)l 答案:Dl 3有A、B、C、D、E、F六人依次站在正六边形的六个顶点上传球,从A开始,每次可随意传给相邻的两人之一,若在5次之内传到D,则停止传
3、球;若5次之内传不到D,则传完5次也停止传球,那么从开始到停止,可能出现的不同传法种数是()l A24 B26l C30 D28l 解析:如图,按题意从A到D只有两种情况:3次到D;5次到D.从A出发传5次所有的情况有2532(种),l 从A到D传3次后再传2次的情况有2228(种)l 328226即为所求l 答案:Bl 4在五棱锥的各棱所在的10条直线中,异面直线共有_对l 解析:只有侧棱与底面上和该侧棱不共点的三条底边为异面直线,因此共有3515对异面直线l 答案:15l 5若把英语单词“book”的字母顺序写错了,则可能出现的错误共有_种l 答案:11 l 类型一分类计数原理l 解题准备
4、:运用分类计数原理时,首先要根据问题的特点,确定分类标准,分类应满足:完成一件事的任何一种方法必属于某一类而且仅属于某一类,即“类”与“类”间的确定性与并列性,做到“不重不漏”l【典例1】所有的两位数中,个位数字大于十位数字的两位数共有多少个?l 解析该问题与计数有关,可考虑选用两个基本原理来计算,完成这件事,只要考虑安排十位上的数字的情况进行分类l 解法一:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则依分类计数原理共有1234567836个l 解法二:按十位数字是1,2,3,4,5,6,7,8分成8类,
5、在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,依分类计数原理可得共有8765432136个l 探究1:三边长均为整数,且最大边长为11的三角形的个数是多少?l 类型二分步计数原理l 解题准备:完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成l【典例2】现安排一份5天的工作值班表,每天有一个人值班共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?l 解析该问题中,完成一件事是安排值日表,因而需一天一天地排,用分步计数原理,分步进行l 先排第一天,可排5人中的任
6、一人,有5种排法;再排第二天,此时不能排第一天已排的人,有4种排法;再排第三天,此时不能排第二天已排的人,仍有4种排法,同理,第四、第五天均各有4种排法由分步计数原理可得值班表共有不同排法为544441280(种)l 点评应用分步计数原理时,要理清思路,按事件发生的过程合理地分步,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,各个步骤都完成了,这件事才算完成l 探究2:如图所示,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域的颜色都不同,求共有多少种不同的涂色方法?l 解析:分四步来完成涂色这件事A有5种涂法,B有4种涂法,C有3
7、种涂法,D有3种涂法(可以使用A涂过的颜色)根据分步计数原理,共有5433180(种)涂色方法l 类型三两个计数原理的综合应用l 解题准备:在解决实际问题中,并不一定是单一的分类或分步,而是可能同时应用两个计数原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的方法求另外,具体问题是先分类后分步,还是先分步后分类,应视问题的特点而定解题时经常是两个原理交叉在一起使用,分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步l【典例3】l 如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色如果只有5种颜色可供使用
展开阅读全文