3-循环冷却水处理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3-循环冷却水处理课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 循环 冷却水 处理 课件
- 资源描述:
-
1、第三章第三章 循环冷却水处理循环冷却水处理 第一节第一节 循环冷却水处理概况循环冷却水处理概况 第二节第二节 循环冷却水中金属的腐蚀及其控制循环冷却水中金属的腐蚀及其控制 第三节第三节 循环冷却水系统中循环冷却水系统中的沉积物及其控制的沉积物及其控制 第四节第四节 循环冷却水系统中的循环冷却水系统中的微生物及其控制微生物及其控制 第五节第五节 冷却水系统的清洗和预膜冷却水系统的清洗和预膜 第六节第六节 循环冷却水系统的日常运行循环冷却水系统的日常运行 第一节第一节 循环冷却水处理概况循环冷却水处理概况 一、一、冷却系统的类型冷却系统的类型1.直流冷却水系统 冷却水仅通过换热设备一次,用过后就排
2、放掉。不需要其他冷却水构筑物,因而投资少、操作简单,但是冷却水的操作费用大,且不符合节水的要求。图3-1 直流冷却水系统 2.2.密闭式循环冷却水系统密闭式循环冷却水系统 冷却水密闭循环,并交替冷却和加热,而不与空气接触。水的再冷通常通过另一台换热设备用其他冷却介质冷却的。一般用于发动机、内燃机或有特殊要求的单台换热设备。图3-2 封闭式循环冷却水系统密闭系统的优点密闭系统的优点(1)水温易控制;(2)水质问题的控制简单化:补充水量少;(3)补充水仅用于补偿水泵填料的泄露水量或因检修而排放的水量;(4)水的蒸发很少;(5)结垢程度较轻:一般用软化水或去离子水。(6)腐蚀问题不严重:氧不是处于饱
3、和状态。3.3.敞开式蒸发系统敞开式蒸发系统 冷却水通过热交换器后,水温提高成为热水,热水经冷却塔曝气与空气接触,由于水的蒸发散热和接触散热使水温降低,冷却后的水再循环利用。又称为冷却塔系统。图3-3 敞开式循环冷却水系统1-补充水(M);2-冷却塔;3-冷水池;4-循环水泵;5-渗漏水(F);6-冷却水;7-冷却用换热器;8-热水(R);9-排污水(B);10-蒸发损失(E);11-风吹损失(D);12-空气 v水的蒸发散热 水在冷却设备中形成大小水滴或极薄水膜,扩大其与空气的接触面积和延长接触时间,加强水的蒸发,使水汽从水中带走汽化所需的热量,从而使水冷却。v水的接触传热 水面与较低温度的
4、空气接触,由于温差使热水中的热量传到空气中去,水温得到降低。温差愈大,传热效果愈好。v水的辐射传热 不需要传热介质的作用,而是由一种电磁波的形式来传播热能的现象。水冷却的原理 冷却水系统中,用来降低水温的构筑物或设备成为冷却构筑物或冷却设备。按其热水与空气接触方式的不同,可分为:v水面冷却构筑物 又称凉水池,需要冷却的水流入池内,通过自然蒸发、辐射和对流传热逐渐将水冷却到适当再用的温度。冷却过程缓慢,效率低,温差小。且需要很大的贮水池。v喷水池 池内装有水管、喷嘴或电动喷水组件,由喷嘴把水喷到大气中,从而增加了蒸发量,即使在较小的水池也能加速冷却。水的消耗大,约为循环水量的1.0-5.0%。易
5、带入周围的杂质。v冷却塔 是一个塔型建筑,水气热交换在塔内进行,可以人工控制空气流量来加强空气与水的对流作用来提高冷却效果。占地面积小、冷却效果好。有自然通风式和机械通风式。冷却塔包括通风筒、配水系统、淋水装置、通风设备、收水器、集通风筒、配水系统、淋水装置、通风设备、收水器、集水池水池等部分 冷却设备的种类与结构冷却设备的种类与结构 图3-4 自然通风冷却塔 图3-5 机械通风冷却塔1-配水系统;2-填料;3-百叶窗;1-配水系统;2-填料;3-百叶窗;4-集水池;5-空气分配区;6-风筒;4-集水池;5-空气分配区;6-风机;7-热空气和水蒸汽;8-冷水 7-风筒;8-热空气和水蒸汽;9-
6、冷水 图3-6 玻璃钢冷却塔1-玻璃钢塔体;2-淋水装置;3-填料;4-空气;5-接水盘;6-冷却水;7-热水;8-排风扇;9-热空气和水蒸汽 冷却塔效率的衡量指标冷却塔效率的衡量指标 冷却幅高(也称湿球温差)冷却水温和空气湿球温度的差值 T2-。代表该地热水冷却所能达到的极限值。T2-越小,效能越高。冷却幅宽 冷却塔的回水和出水温度的差值,T1-T2。淋水密度 指冷却塔单位面积上的热水喷洒负荷,m3/(m2h)。淋水密度与冷却幅宽、水的比热的乘积称为冷却构筑物单位面积的热负荷。敞开式冷却水的工况敞开式冷却水的工况 冷却过程中的三种损失:蒸发损失、风吹损失、排污量补充水量 M=E+D+B+F,
7、(1)蒸发损失E E=a(R-B),a=e(t2-t1)(2)风吹损失D D=(0.2%-0.5%)R(3)排污损失B B=E/(K-1)(4)渗漏损失F M、E、D、B分别代表补充水量、蒸发损失、风吹损失、排污量,R为系统中循环水量,e为损失系数,K为浓缩倍数。离子浓度的改变 图3-7 降低浓缩倍数时水中 图3-8提高浓缩倍数时水中 离子浓度变化曲线 离子浓度变化曲线 不论系统中某离子的初始浓度为多少,随着运行时间的推移,其最终的浓度总是浓缩倍数和补充水中离子浓度的乘积。由此证明了控制好补充水量和排污量能使系统中某些离子浓度稳定在一个定值。浓缩倍数 指循环水中某物质的浓度和补充水中某物质的浓
8、度之比。用来计算浓缩倍数的物质要求他们的浓度除了随浓缩过程增加外不受其他条件干扰。二、二、敞开式循环冷却水系统产生的问题敞开式循环冷却水系统产生的问题沉积物的析出和附着沉积物的析出和附着 重碳酸盐分解产生碳酸钙水垢,轻者降低换热器的传热效率,重者堵塞管道。有害离子引起的腐蚀有害离子引起的腐蚀 溶解氧引起电化学腐蚀 有害离子引起腐蚀微生物的滋生和粘泥微生物的滋生和粘泥 细菌和藻类繁殖,生成生物粘泥而引起腐蚀、管道堵塞三、三、敞开式循环冷却水处理的重要性敞开式循环冷却水处理的重要性稳定生产节约水资源减少环境污染节约钢材第二节第二节 循环冷却水系统中金属的腐蚀及其控制循环冷却水系统中金属的腐蚀及其控
9、制 一、一、冷却水中金属腐蚀的机理冷却水中金属腐蚀的机理 造成金属腐蚀的是金属的阳极溶解反应。因此,金属的腐蚀破坏仅出现在腐蚀电池中的阳极区,而阴极区是不腐蚀的。孤立的金属腐蚀时,在金属表面上同时以相等速度进行着一个阳极反应和一个阴极反应的现象,称为电极反应的耦合。互相耦合的反应称为共轭反应,而相应的腐蚀体系则称为共轭体系。在共扼体系中,总的阳极反应速度与总的阴极反应速度相等。此时,阳极反应释放出的电子恰好为阴极反应所消耗,金属表面没有电荷的积累,故其电极电位也不随时间而变化。从以上的讨论中可以看到,在腐蚀控制中,只要控制腐蚀从以上的讨论中可以看到,在腐蚀控制中,只要控制腐蚀过程中的阳极反应和
10、阴极反应两者中的任意过程中的阳极反应和阴极反应两者中的任意个电极反应的速个电极反应的速度,则另一个电极反应的速度也会随之而受到控制,从而使整度,则另一个电极反应的速度也会随之而受到控制,从而使整个腐蚀过程的速度受到控制。个腐蚀过程的速度受到控制。二、二、影响腐蚀的因素影响腐蚀的因素(一)化学因素(一)化学因素 (二)物理因素(二)物理因素 (三)微生物(三)微生物 1.pH值 1.温度 2.溶解盐 2.金属相对面积 3.溶解气体 3.流速 4.悬浮物 4.不同金属 5.冶金学方面 (一)化学因素(一)化学因素 pHpH值值 pH值对金属腐蚀速度的影响取决于该金属的氧化物在水中的溶解度对pH值的
11、依赖关系。溶解盐溶解盐 溶液电导率的升高使初期腐蚀速度也升高;像Cl-、SO42-等腐蚀性离子,可以破坏金属的阳极氧化保护膜,从而进一步加速腐蚀;构成硬度和碱度的离子对腐蚀却有抑制作用;在电解质浓度高的水中,氧的溶解度下降,所以含盐量高时腐蚀速度降低。pH值对腐蚀速度的影响 溶解固体对腐蚀速率的影响 不同温度时氧含量对腐蚀的影响 溶解气体溶解气体 (1)溶解氧 起去极化作用,会促进腐蚀。当水中含氧不一致时,会形成氧浓差充气电池,表现形式为垢下腐蚀。在某些情况下氧是氧化性钝化剂,能使金属钝化而免于腐蚀,如在铝的腐蚀过程中 (2)二氧化碳 溶于水后形成碳酸,增大水的酸性,从而有利于氢的逸出和金属表
12、面膜的溶解破坏。(3)氨 会选择性地腐蚀铜:NH3+H2O=NH4OH NH4OH+Cu2+=Cu(NH3)2+H2O (4)硫化氢 导致pH降低;和铁反应生成硫化铁(阴极),与铁形成电偶腐蚀悬浮物悬浮物 主要是易沉积在换热器表面引起垢下腐蚀。当冷却水流速过高时,颗粒容易对硬度较低的金属或合金产生磨损腐蚀。温度温度 温度升高,腐蚀的化学反应速度就提高。温度与扩散速度成正比,与过电压、粘度成反比。增加扩散量能使更多氧到达金属表面,导致腐蚀电池去极化;过电压下降时,因析氧而导致去极化;粘度下降有利于阴阳极去极化,即有利与大气中氧的溶解和加速氢气的逸出。在金属相邻的区域内,温度不同,就会加剧点蚀,热
13、的部位为阳极,冷的部位为阴极。温度对腐蚀速率的影响 温差产生的 A-敞开系统;B-密闭系统 自发电池(二)物理因素(二)物理因素金属相对面积金属相对面积(面积效应)(面积效应)腐蚀速率与阴极和阳极面积的比例成正比关系。不同金属:镍-钢结合时,镍为阴极。采用管-管板连接,钢-镍则腐蚀加剧 镍-钢增腐蚀小得多。同一金属:钝化膜破坏。(点蚀)流速流速 一般情况下流速增加使腐蚀速度增加。在高流速区域,层流区的厚度减少,氧容易达到金属表面,氧的去极化作用导致腐蚀加速进行。高速流水会冲走可能成为钝化层的腐蚀产物,从而加剧腐蚀。不同金属不同金属 不同金属的接触而引起的腐蚀称为电偶腐蚀。电偶腐蚀的驱动力是金属
14、间的电位差,电偶中的阳极腐蚀。(阴极保护)冶金学方面冶金学方面 金属的均匀性:非均相金属的夹杂区、晶粒结构的金属化合物上的夹杂区 金属表面状况:表面总有缺陷,如划痕、裂纹等;静态应力:交变应力。微生物的粘泥引起垢下腐蚀。一些微生物的新陈代谢过程参与了电化学过程,促使腐蚀加速。如,厌氧菌会形成浓差电池,加快局部腐蚀;某些种类的细菌还会产生酸性化合物;去磺弧菌属是硫酸盐还原菌,可使硫酸盐生成硫化氢;硫杆菌属把硫酸盐氧化成硫酸。(三)微生物(三)微生物三、腐蚀的形态 腐蚀常见的形态有均匀腐蚀、点蚀、侵蚀、选择性腐蚀、垢下腐蚀、缝隙腐蚀、水线腐蚀、开裂腐蚀(应力腐蚀开裂)。均匀腐蚀(全面腐蚀)均匀腐蚀
15、(全面腐蚀)是循环冷却水中遇到的最普遍的问题。均匀腐蚀指在腐蚀介质的作用下,金属整个表面发生的腐蚀破坏,基本按相同的腐蚀速度进行。这是因为金属表面的阴阳极交叉分布,大量的微阴极微阳极反应同时发生,金属具有相同的腐蚀电流,腐蚀产物在整个金属表面形成。均匀腐蚀是在金属正常的腐蚀允许范围内,一般在设计时纳入设计寿命之中。点蚀点蚀 最常见的一种腐蚀形态,通常其腐蚀深度大于其孔径。点蚀深度与大阴极和小阳极的面积比率成正比关系。在含活性阴离子的介质中,钝化膜的平衡破坏,溶解占优势,形成孔蚀核,蚀核长大成为蚀孔,蚀孔发展形成氧浓差电池,最后形成闭塞电池,在酸化自催化作用下造成腐蚀加速。(1)冲击腐蚀 在湍流
16、水中,含溶解固形物和悬浮物或所携带的气体含量较高的水中氧化物的钝化膜常遭受破坏,使金属设备产生严重的局部腐蚀。如换热器管束的入口、节流区、直角弯管及弯头处受水侵蚀最严重。铜及其合金。海军黄铜、铝黄铜和铜镍合金较能抗冲击腐蚀。受冲击腐蚀的金属断面 侵蚀侵蚀 是在高流速条件下形成的。分为冲击腐蚀冲击腐蚀和气蚀气蚀两种。(2)气蚀(空泡腐蚀)在流速高、压力变化大,且含溶解气体或渗入气体的水中易发生,如泵叶轮的吸水侧、管网系统的直角弯管、球阀或闸阀的出水侧。当水流到较高压力时,低压区形成的气泡发生破裂,产生很高的冲击压力,可以到达几十到几百Mpa,导致金属表面被腐蚀成为蚀坑、裂纹和穿孔。气蚀外表往往是
17、又深又圆的麻坑,但无锈瘤。溶解氮含量高时会加剧气蚀。合金中的某一种元素首先被侵蚀,从合金主体中被浸提出。(1)脱锌腐蚀 锌从黄铜中侵蚀下来,使铜的结构变成脆弱的孔状体,表面呈淡红色,而不是黄色。当存在氧的浓度差、低流速、高温、酸性和碱性介质和曝气的水,会加剧这种侵蚀。脱锌有两种:塞式(在高盐水中,涉及面积小,但穿透很深)和层式(面积大且均匀,沿整个金属表面发生)(2)石墨化作用 铸铁会选择性地失铁。金属保持一个弱石墨和氧化铁结构,石墨的过电压很低,会由于氧的放出而导致侵蚀蔓延。通常情况下,晶粒边界首先受到侵蚀,然后逐步蔓延。在低pH值、高含量溶解固体、硫化氢气体之类的酸性污染物会加速石墨化作用
18、。选择性腐蚀选择性腐蚀 垢下腐蚀垢下腐蚀 垢下腐蚀属于氧的浓差电池腐蚀。沉积物控制不善,会引起垢下腐蚀。一旦发生,腐蚀会循环加剧,药剂也无济于事。低流速区域易发生。防止垢下腐蚀的措施:加大流速减少沉积物,加强对微生物的控制,减少微生物粘泥。缝隙腐蚀缝隙腐蚀 氧浓差电池的形成对腐蚀的开始起促进作用,酸化自催化作用是造成腐蚀加速的根本原因。侵蚀程度与阳极缝隙的面积和周围的阴极面积的比率成正比关系。水线侵蚀水线侵蚀 在未充满水的配水系统或热交换器以及各种容器内都有一个三相区:上部是空气,下部是冷却水和金属本身。三相的存在会同时产生充气浓差电池充气浓差电池和缝隙腐蚀缝隙腐蚀。在金属和交界的弯月面部分容
19、易发生氧的去极化,这一充满气体的部分成为阴极,而紧挨着它的金属区则为阳极。一般用阴极抑制剂来克服水线侵蚀,但剂量要适当。应力腐蚀开裂应力腐蚀开裂 (1)晶间开裂腐蚀 晶间开裂腐蚀产生于 晶粒边界之间;一般出现在阳极晶粒的边界。如奥氏体和马氏体不锈钢的应力腐蚀。金属在制造过程中常处于应力状态,会在垂直于应力方向上开裂。在高温、高氯化物浓度或腐蚀条件的存在,都会促使晶间腐蚀开裂。(2)穿晶开裂腐蚀 穿晶开裂腐蚀表现为穿过晶粒。发生在反复承受应力的条件下发生。纯金属抵抗穿晶开裂的能力较强。晶间应力腐蚀开裂(200)穿晶应力腐蚀开裂(200)腐蚀速度又称为腐蚀速率或腐蚀率。工业冷却水处理的文献中,已经
20、采用SI制的mma(毫米年)和ma(微米年)作为腐蚀速度的单位。它们的物理意义是:如果金属表面各处的腐蚀是均匀的,则金属表面每年的腐蚀深度将是多少mm(毫米)或m(微米)。对冷却水系统中金属的腐蚀控制并不是要求绝对不发生腐蚀(即腐蚀速度为零),而是要求把金属的腐蚀速度控制在一定范围。设计规范中对循环冷却水系统中腐蚀控制指标规定:碳钢换热器管壁的腐蚀速度宜小于0.125mma;钢合金和不锈钢换热器管壁的腐蚀速度宜小于0.005mma。四 冷却水中腐蚀的控制方法 循环冷却水系统中金属腐蚀的控制方法很多,常用的有1.提高冷却水的pH值2.添加缓蚀剂3.选用耐蚀材料的换热器4.用防腐阻垢涂料涂覆(一)
21、提高(一)提高pH值控制腐蚀值控制腐蚀 碳钢的腐蚀速度与PH值的关系 由金属腐蚀的理论可知,随着水pH值的增加,水中氢离子的浓度降低,金属腐蚀过程中氢离子去极化的阴极反应受到抑制,碳钢表面生成氧化性保护膜的倾向增大,故冷却水对碳钢的腐蚀性随其PH值的增加而降低。冷却水的pH值对碳钢腐蚀速度的影响未保护碳钢的腐蚀速度;-碳钢管壁腐蚀速度容许值的上限 提高提高pH值控制碳钢腐蚀的原理值控制碳钢腐蚀的原理 由上图中可以看到,在没有溶解氧的溶液中,铁的腐蚀电位(实线)总是在a线(它代表H+与H2的平衡电位与pH的关系)以下。与此同时在pH9.5时,铁的自然腐蚀电位处子腐蚀区内,这意味着此时铁(或碳钢)
22、将发生折氢的腐蚀。随着水pH值的增大,铁的腐蚀电位逐渐接近铁的稳定区,故铁的腐蚀速度将随pH位的增大而降低。在pH9.5 12.5时,铁的自然腐蚀电位靠近稳定区的边界。此时,铁的电位实际处于Fe-Fe3O4体系的平衡电位,Fe变为Fe3O4,腐蚀速度变得很小。在有溶解氧存在的溶液中,铁的腐蚀电位与无溶解氧存在时相比明显升高(见图中的虚折线)。在pH8.0时,氧虽能使铁的腐蚀电位升高,但还不足以进入钝化区,铁的自然腐蚀电位仍处于腐蚀区内,此时,氧将使铁的腐蚀速度增加。当pH8.0时,氧使铁的表面生成一层钝化膜(主要成分为-Fe2O3),铁的腐蚀电位升高而进人钝化区内。在水中没有氯离子的情况下,铁
23、将得到保护。碱性冷却水处理碱性冷却水处理 第一种是广义的碱性冷却水处理,是指将循环冷却水的运行pH值控制在大于7.0的冷却水处理。这种处理实际上包括了两大类:(1)不加酸调节pH值的碱性冷却水处理 在循环冷却水运行过程中,人们不再向冷却水中加酸以调节pH值,而是让冷却水在冷却塔内爆气过程中达到其自然平衡pH值,采用这种处理方式,冷却水的pH值大致为8.09.5;(2)加酸调节pH值的碱性冷却水处理 这是指在循环冷却水的运行过程中,向冷却水中加入酸(一般是浓硫酸)以控制其pH值,使之保持在7.08.0之间的处理。由于pH7.08.0的水已偏于碱性一侧,故也把它归入碱性冷却水处理。第二种是狭义的碱
24、性冷却水处理。它仅是指那些不加酸调节pH值的碱性冷却水处理。提高冷却水提高冷却水pHpH值的方法值的方法 敞开式循环冷却水系统是通过水在冷却塔内的曝气过程而提高其pH值的。当水中游离CO2浓度降到很低,水中的CO2不再逸入大气,达到其自然平衡pH值时,水的pH值大约升高到8.5左右。这种通过曝气去提高冷却水pH值的途径有两个优点:(1)它不需要添加药剂或增加设备;(2)它不需要人工去控制冷却水的pH值,而是通过化学平衡的规律而自动去控制,故在充分曝气的条件下,循环冷却水的pH值能较可靠地保持在8.09.5的范围内。提高p pH值后遇到的问题(1)冷却水中碳酸钙的沉积倾向增加,易于引起结垢和垢下
25、腐蚀。(2)循环冷却水在pH8.09.5时运行,碳钢的腐蚀速度虽有所下降,但仍然偏高不一定能达到设计规范要求的0.125mma(5mpy)以下。因此,冷却水系统在pH8.09.5运行时,除了进行结垢控制和微生物生长控制外,还需要进行腐蚀控制。(3)给两种常用的冷却水缓蚀剂聚磷酸盐和锌盐的使用带来了困难。冷却水pH值的升高使聚磷酸盐水解生成磷酸钙垢的倾向增大,也使锌离子易于生成氢氧化锌析出。右图是水中锌离子浓度随水的pH值变化的情况。随着pH值的增加,水中锌离子浓度急剧下降。当pH8.09.5时,锌离子浓度只能保持在1.00.2mg/L左右。在这样低的锌离子浓度下很难使碳钢的腐蚀速度控制在0.1
展开阅读全文