书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型高中数学第二章函数习题课函数单调性与奇偶性的综合应用课件新人教B版必修1.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4566831
  • 上传时间:2022-12-20
  • 格式:PPT
  • 页数:20
  • 大小:675.54KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学第二章函数习题课函数单调性与奇偶性的综合应用课件新人教B版必修1.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 第二 函数 习题 调性 奇偶性 综合 应用 课件 新人 必修 下载 _必修第一册_人教B版(2019)_数学_高中
    资源描述:

    1、习题课函数单调性与奇偶性的综合应用函数的单调性与奇偶性【问题思考】1.填空.(1)函数的奇偶性是函数定义域上的概念,而函数的单调性是区间上的概念,因此在判定函数的单调性的时候,一定要指出函数的单调区间.(2)在定义域关于原点对称的前提下,f(x)=x2n-1(nZ)型函数都是奇函数;f(x)=x2n(nZ)型函数及常数函数都是偶函数.(3)设f(x),g(x)的定义域分别是D1,D2,则它们在公共定义域上,满足奇+奇=奇,偶+偶=偶,奇奇=偶,奇偶=奇,偶偶=偶.(4)若f(x)为奇函数,且在区间a,b(ab)上是增(减)函数,则f(x)在区间-b,-a上是增(减)函数;若f(x)为偶函数,且

    2、在区间a,b(ab)上是增(减)函数,则f(x)在区间-b,-a上是减(增)函数,即奇函数在关于原点对称的两个区间上的单调性相同;而偶函数在关于原点对称的两个区间上的单调性相反.(5)若f(x)为奇函数,且在x=0处有定义,则f(0)=0;若f(x)为偶函数,则f(x)=f(-x)=f(|x|).2.做一做:(1)若函数f(x)=(m-2)x2+(m-1)x+2是偶函数,则f(x)()A.在1,7上是增函数B.在-7,2上是增函数C.在-5,-3上是增函数D.在-3,3上是增函数(2)若奇函数f(x)满足f(3)f(1),则下列各式中一定成立的是()A.f(-1)f(1)C.f(-2)f(3)

    3、D.f(-3)f(5)(3)定义在R上的偶函数f(x),对任意x1,x20,+)(x1x2),都有 0,则f(3),f(-2),f(1)按从小到大的顺序排列为 .解析:(1)因为函数f(x)=(m-2)x2+(m-1)x+2是偶函数,所以m=1.所以f(x)=-x2+2,结合函数f(x)可知选C.(2)因为f(x)是奇函数,所以f(3)=-f(-3),f(1)=-f(-1).又f(3)f(1),所以-f(-3)f(-1).(3)由已知条件可知f(x)在0,+)内单调递减,f(3)f(2)f(1).再由偶函数性质得f(3)f(-2)f(1).答案:(1)C(2)A(3)f(3)f(-2)0时,f

    4、(x)=-2x2+3x+1,求:(1)f(0);(2)当x0时,f(x)的解析式;(3)f(x)在R上的解析式.分析:(1)利用奇函数的定义求f(0);探究一探究二思想方法解:(1)因为函数f(x)是定义在R上的奇函数,所以f(-0)=-f(0),即f(0)=0.(2)当x0,f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是奇函数,故f(x)=-f(-x),所以f(x)=2x2+3x-1,x0.(3)函数f(x)在R上的解析式为反思感悟利用函数奇偶性求解析式的注意事项1.在哪个区间求解析式,就把“x”设在哪个区间;2.利用已知区间的解析式进行代入;3.利用f(x)

    5、的奇偶性把f(-x)写成-f(x)或f(x),从而解出f(x);4.定义域为R的奇函数满足f(0)=0.探究一探究二思想方法变式训练变式训练1本例中若把“奇函数”换成“偶函数”,求x0时f(x)的解析式.解:设x0,f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.f(x)是偶函数,f(-x)=f(x).f(x)=-2x2-3x+1,xf(-3)f(-2)B.f()f(-2)f(-3)C.f()f(-3)f(-2)D.f()f(-2)f(-3)解析:f(x)在R上是偶函数,f(-2)=f(2),f(-3)=f(3).而23,且f(x)在0,+)内为增函数,f(2)f(3)f().

    6、f(-2)f(-3)f(3)f().又f(x)是R上的偶函数,故f(-2)=f(2),f(-3)=f(3),从而有f(-2)f(-3)f().探究一探究二思想方法化归思想在解抽象不等式中的应用【典例】已知函数f(x)的定义域为(-1,1),且满足下列条件:f(x)为奇函数;f(x)在定义域上单调递减;f(1-a)+f(1-a2)0,求实数a的取值范围.思路点拨:要由不等式f(1-a)+f(1-a2)0求实数a的取值范围,应利用函数f(x)的奇偶性与单调性去掉“f”,建立关于a的不等式组求解.解:f(x)是奇函数,f(1-a2)=-f(a2-1).f(1-a)+f(1-a2)0f(1-a)-f(

    7、1-a2)f(1-a)f(a2-1).f(x)在定义域(-1,1)内是单调递减的,a的取值范围为(0,1).探究一探究二思想方法方法点睛1.本题的解答充分体现了化归思想的作用,将抽象不等式借助函数的性质转化成为具体不等式,问题从而解决.2.当然本题中还要注意以下化归与计算等细节易错问题:(1)由函数f(x)为奇函数,将不等式f(1-a)+f(1-a2)0等价变形时出错;(2)利用函数f(x)单调递减去掉“f”,建立关于a的不等式组时,因忽略函数f(x)的定义域出错;(3)解错不等式(组)或表示a的取值范围出错.探究一探究二思想方法变式训练变式训练设函数f(x)是定义在R上的奇函数,且在区间(-

    8、,0)内是减函数,实数a满足不等式f(3a2+a-3)f(3a2-2a),求实数a的取值范围.解:f(x)在区间(-,0)内是减函数,f(x)的图象在y轴左侧递减.又f(x)是奇函数,f(x)的图象关于原点中心对称,则在y轴右侧同样递减.又f(-0)=-f(0),解得f(0)=0,f(x)的图象在R上递减.f(3a2+a-3)3a2-2a,解得a1,即实数a的取值范围为(1,+).123451.设f(x)是定义在-6,6上的偶函数,且f(4)f(1),则下列各式一定成立的是()A.f(0)f(3)C.f(2)f(0)D.f(-1)f(1),f(4)f(-1).答案:D123452.已知x0时,

    9、f(x)=x-2 017,且知f(x)在定义域R上是奇函数,则当x0时,f(x)的解析式是()A.f(x)=x+2 017B.f(x)=-x+2 017C.f(x)=-x-2 017D.f(x)=x-2 017解析:设x0,所以f(-x)=-x-2 017.又因为f(x)是奇函数,所以f(x)=-f(-x)=x+2 017.故选A.答案:A123453.已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)=.解析:f(-2)=(-2)5+a(-2)3+b(-2)-8=10,25+a23+2b=-18.f(2)=25+a23+2b-8=-26.答案:-2612345123455.已知奇函数f(x)在R上是减函数,且f(3a-10)+f(4-2a)0,求a的取值范围.解:f(3a-10)+f(4-2a)0,f(3a-10)-f(4-2a).f(x)为奇函数,-f(4-2a)=f(2a-4).f(3a-10)2a-4.a6,即a的取值范围为(6,+).

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学第二章函数习题课函数单调性与奇偶性的综合应用课件新人教B版必修1.ppt
    链接地址:https://www.163wenku.com/p-4566831.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库