书签 分享 收藏 举报 版权申诉 / 61
上传文档赚钱

类型非弹性中子散射及应用简介刘本琼课件.pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:4565763
  • 上传时间:2022-12-19
  • 格式:PPTX
  • 页数:61
  • 大小:13.49MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《非弹性中子散射及应用简介刘本琼课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    弹性 中子 散射 应用 简介 课件
    资源描述:

    1、Inelastic Neutron Scattering in Condensed Matter:Phonons,CEF Excitations,Magnons刘本琼刘本琼 11.Basic principles2.Instruments introduction3.Phonons4.Crystal field excitations5.Spin waves:MagnonsOutline2Basic principlesFig.1 Schematic representation of the scattering experiment,and relations among the init

    2、ial and final wavevectors ki and kf and the scattering vector Q.2 is the scattering angle,and d is the collection solid angle of the detector.3)(kkQ)(2222kkmBasic principlesInelastic neutron scatteringisanexperimentaltechniquecommonlyusedincondensedmatterresearchtostudyatomicandmolecularmotionaswell

    3、asmagneticandcrystalfieldexcitations.4Basic principles5Cold triple-axis spectrometer6monoanadetAn incident beam with wavevector k is selected by the monochromator crystal(1st axis).The monochromatic beam is scattered from the sample(2nd axis).The intensity of the scattered beam with wavevector k is

    4、reflected by the analyzer crystal(3rd axis)onto the neutron detector.CTASCMRR:KUNPENG7SamplestageAnalyzerDetectorTOF spectrometers8In neutron scattering experiments,neutron energy can be determined by measuring their flight time t over a distance L of a few meters.The flight time of the neutrons wit

    5、h wavevector k and k are t0=L/v,and t=L/v,andDepending on whether k and k is measured by TOF,the method is called direct TOF or inverted TOF,respectively.1.Basic principles2.Instruments introduction3.Phonons4.Crystal field excitations5.Spin waves:MagnonsOutline910Phonons/lattice vibrationsTheatomsin

    6、asolidareinconstantmotionandgiverisetolatticevibrations.11Phonons/lattice vibrationsPhonons/lattice vibrations12Fig.2Phonondispersioncurvesforaone-dimensionallineofatomswith(a)asinglemass,(b)twodifferentmassesmandM.Fig.3PhonondispersioncurvesforGealongcertainhighsymmetryaxesintheBrillouinzone.13Long

    7、itudinal/transversal phononsFig.4 The momentum transfer of the neutrons Q points always into the direction of the real displacements ui.(a)longitudinal and(b)transversal oscillations.The cross section of phonon excitations contains the scalar product Qu with the polarization of the wave u.Thus,an os

    8、cillation is only excited for Q with a component in the polarization direction.14How to measure phonons?In standard experiments,the scans are done at constant Q or constant energy transfer E.Most of the Brillouin zone is normally measured with constant-Q(Fig.(a),while for very stiff dispersion modes

    9、,in the vicinity of the Brillouin zone center,constant-E is chosen(Fig.(b).15How to measure phonons?16Example:phonons in GeFig.5 Phonon dispersion curves for Ge along certain high symmetry axes in the Brillouin zone.The characters express the symmetry types and degeneracies of the lattice modes.Grou

    10、p theory allows us to identify the high symmetry points where degeneracies occur,which modes stick together,which modes cross,and which modes show anti-crossings.17Examples:NaClFig.6(a)ThespacegroupofNaClis#225.Thefccunitcellcontains4primitiveunitcellswith4Naand4Claotms.(b)Therhombohedralprimitivece

    11、llofthefcclatticewhichcontainsoneNaatomandoneClatom.18Examples:NaClThegroupofthewavevectoratk=0fortheNaClstructureisOh.ThepointgroupoperationsforOhis19Theoretical calculations of phononsB.Liu,et al.,Acta Phys.Sin.62,176104(2013)20Books and web sites21Phonons in CeAuAl3 B.Liu,et al.,Phys.Rev.B 98,174

    12、306(2018)Fig.7(1)Crystal structure of CeAuAl3.(b)Brillouin zone of the body-centered tetragonal lattice of CeAuAl3 with ca.Fig.8PhonondispersionforCeAuAl3alonghighsymmetrylines-M-S0-.22Imaginary mode 2023Imaginary mode 20B.Liu,et al.,Phys.Chem.Chem.Phys.17,4089(2015)X.Wang,et al.,Phys.Chem.Chem.Phys

    13、.16,26974(2014)Fig.9PhonondispersionforU2MoalongsymmetrylinesinthebodycenteredtetragonalBZ.Fig.10ThestructuresofU2Mo.TheredandgreencirclesareMoandUatoms,respectively.24Acoustic modes and macroscopic elasticityFig.11 Atomic displacements associated with a long-wavelength longitudinal acoustic mode pr

    14、opagating along 100 in a cubic crystal.Consider a longitudinal acoustic mode in a cubic crystal with wave vector along 100.The magnitude of the wave vector is small but non-zero.Each(100)plane of atoms is displaced in the x direction by a constant amount relative to its neighbouring planes.Therefore

    15、 the displacement ux of each plane is proportional to its position x.This corresponds to a uniform compressional strain of the crystal,e11=ux/x,which locally makes a cubic unit cell tetragonal.25Acoustic mode frequencies and the elastic constant tensorHow to calculate the slopes of the acoustic phon

    16、on dispersion curves in the long-wavelength limit,where the acoustic modes give rise to strain distortions?Using the standard Newton equation of motion,one can obtain:It is common practice to use the Voigt notation,in which pairs of indices are replaced by single indices:26Example:cubic system27Exam

    17、ple:cubic systemWe can comment on the stability of the crystal.If C44 is negative,the crystal is unstable against the shear given by one of the transverse acoustic modes with wave vectors in the a*-b*plane.If C11 basis,the CEF Hamiltonian HCEF can be given as37The INS spectra38The bound stateP.ermk,

    18、A.Schneidewind,B.Liu,et al.,PNAS,doi/10.1073/pnas.1819664116Fig.15Keycharacteristicsoftheneutron-scatteringexcitationspectraofsingle-crystalCeAuAl3observedinreciprocalspacealong to M to S to at T=5 K.1.Basic principles2.Instruments introduction3.Phonons4.Crystal field excitations5.Spin waves:Magnons

    19、Outline39Magnetic orderingMagnetic order normally exists below a critical temperature(Tc or TN)at which a phase transition takes place.For the spin ordered ground state,one can imagine different configurations,e.g.,all spins parallel(ferromagnetism),or antiparallel(antiferromagnetism),(anti-)ferrima

    20、gnetic ordering or more complex like helix-form.4041Magnetic ordering42Magnetic ordering43Magnetic structure of MnWO4 Magnetic structure of MnWO4 at 3K(left),13 K(middle),and 10K(right).44Spin Waves in Ferromagnets45Spin Waves in FerromagnetsSpin Waves in Antiferromagnets46Finding the eigenenergies4

    21、7Hwhere q and q are Bose operators.If such a transformation exist,the diagonal elements in the matrix will be the eigenergies of the system and therefore non-negative.Calculating the spin wave intensities48Thedifferentialscatteringcross-sectionformagneticscatteringisgivenas:49Calculating the spin wa

    22、ve intensitiesdoesnotcontributetotheinelasticscatteringcross-sectioniforisequaltothepreferredspindirection(thez-direction).The spin-canting case:MnWO450Fig.17Themagneticsublattice(4a2b2c)ofAF1ofMnWO4.OnlymagneticMn2+sites(MnainpinkandMnbincyanblue)areplottedtodemonstratetwodifferentspin-cantingtextu

    23、resclearlyseenwiththerespectivecantingangles.Fig.16Thenuclearstructureunitofhuebnerite(MnWO4)containstwoindependentMnsites,denotedMnaandMnb.B.Liu,et al.,J.Phys.:Condens.Matter 30,295401(2018).S.Park,B.Liu,et al.,J.Phys.:Condens.Matter 30,135802(2018).51The spin-canting case:MnWO422,1()()2i lilaicii

    24、liiHJDD SSa Sc SB.Liu,et al.,J.Phys.:Condens.Matter 30,295401(2018).52The spin-canting case:MnWO453The spin-canting case:MnWO454The spin-canting case:MnWO455The spin-canting case:MnWO4InordertodiagonalizetheHamiltonianHq,itisneededtointroduceatransformationmatrixT,anda=T,so that where is a diagonal

    25、matrix and its diagonal elements are eigenvalues of the system.The transformation matrix T is a 1616 matrix with columns that are eigenvectors to I1HqT=T,and it also must respect the Bose commutation rules.Once the correct transformation matrix T is obtained,the differential scattering cross section

    26、s for magnetic scattering are calculated as follows,56The spin-canting case:MnWO4Fig.18SpinwavedispersionalongH,0.5,2Hdirectionthroughthemagneticpeak(0.25,0.5,0.5).Theredpointsareexperimentaldata.Fig.19SpinwavespectrumalongH,0.5,2Hdirectionthroughthemagneticpeak(0.25,0.5,0.5),withGaussianfunctioncon

    27、voluted.ThecolorcodedenotestheINSintensity.57The spin-canting case:MnWO41.Self-developedprogram(Fortran,Matlab,)2.Density-FunctionalTheory3.SpinW58How to obtain the exchange-coupling constants?59DFT calculationsFig.20 Ordered spin arrangements in each/bc layer of Mn2+ions in the FM,A1,A2,A3,A4,A5,A6,A7,A8,A9 states of MnWO4.The up-spin and down-spin Mn2+sites are represented by filled and unfilled circles,respectively.C.Tian,et al.,Phys.Rev.B 80,104426(2009)60DFT calculationsThanksforyourattention!61The end

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:非弹性中子散射及应用简介刘本琼课件.pptx
    链接地址:https://www.163wenku.com/p-4565763.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库