超声波检测专业知识课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《超声波检测专业知识课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超声波 检测 专业知识 课件
- 资源描述:
-
1、整 体 概 述THE FIRST PART OF THE OVERALL OVERVIEW,P L E A S E S U M M A R I Z E T H E C O N T E N T第一部分 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。在特种设备行业,通常指宏观缺陷检测和材料厚度测量。作用:质量控制、节约原材料、改进工艺、提高劳动生产率 物体(或物体的一部分)在某一中心位置两侧所做的往复运动,就叫做机械振动钟摆的摆动,水上浮标的浮动,担物行走时扁担的颤动,在微风中
2、树梢的摇摆,振动的音叉、锣、鼓、琴弦等都是机械振动。振动产生的必要条件:物体一离开平衡位置就会受到回复力的作用;阻力要足够小。振动的过程 物体(或质点)在受到一定力的作用下,将离开平衡位置,产生一个位移;该力消失后,在回复力作用下,它将向平衡位置运动,并且还要越过平衡位置移动到相反方向的最大位移位置,然后再向平衡位置运动。这样一个完整运动过程称为一个“循环”或叫一次“全振动”。振动的分类 周期性振动:每经过一定时间后,振动体总是回复到原来的状态(或位置)的振动 非周期性振动:不具有上述周期性规律的振动周期、频率(振动的快慢),振幅(振动的强弱)振幅A振动物体离开平衡位置的最大距离,叫做振动的振
3、幅,用A表示。周期T当物体作往复运动时完成一次全振动所需要的时间,称为振动周期,用T表示。常用单位为秒(s)。对于非周期性振动,往复运动已不再是周期性的,但周期这个物理量仍然可以反映这种运动的往复情况。频率f振动物体在单位时间内完成全振动的次数,称为振动频率,用f表示。常用单位为赫兹(Hz),1赫兹表示1秒钟内完成1次全振动,即1Hz=1次/秒。此外还有千赫(kHz),兆赫(MHz)。周期和频率的关系:二者互为倒数,T=1/f定义:物体在受到跟位移大小成正比,而方向总是指向平衡位置的回复力作用下的振动,叫做 谐振动。特点:1、回复力与位移成正比而方向相反,总是指向平衡位置。2、是一种理想化的运
4、动,振动过程中无阻力,所以振动系统机械能守恒。3、谐振动的振幅、频率和周期保持不变,其频率为振动系统的固有频率,是最简单、最基本的一种振动,任何复杂的振动都可视为多个谐振动的合成 谐振动是理想条件下的振动,即不考虑摩擦和其它阻力的影响。任何实际物体的振动,总要受到阻力的作用。由于克服阻力做功,振动物体的能量不断减少。同时,由于在振动传播过程中,伴随着能量的传播,也使振动物体的能量不断地减少。不符合机械能守恒定律 振幅或能量随时间不断减少的振动称为阻尼振动。超声探头 晶片后粘贴阻尼块 受迫振动:物体受到周期性变化的外力作用时产生的振动。如缝纫机上缝针的振动,汽缸中活塞的振动和扬声器中纸膜的振动等
5、。受迫振动刚开始时情况很复杂,经过一段时间后达到稳定状态,变为周期性的谐振动。其振动频率与策动力频率相同,振幅保持不变。受迫振动的振幅与策动力的频率有关。共振:当策动力频率P与受迫振动物体固有频率相同时,振幅最大。应用:探头:使高频电脉冲的频率等于压电晶片的固有频率,从而产生共振,这时压电晶片的电声能量转换效率最高。受迫振动物体受到策动力作用,不符合机械能守恒。超声探头中的压电晶片在发射超声波时:在高频电脉冲激励下产生受迫振动;在起振后受到晶片背面吸收块的阻尼作用,因此又是阻尼振动图2.3振动的传播过程,称为波动。波动分为机械波和电磁波两大类。机械波的产生与传播过程 如图2.3所示的固体弹性模
6、型。质点间以弹性力联系在一起的介质称为弹性介质。(固体、液体、气体)当外力F作用于质点A时,A就会离开平衡位置,这时A周围的质点将对A产生弹性力使A回到平衡位置。当A回到平衡位置时,具有一定的速度,由于惯性A不会停在平衡位置,而会继续向前运动,并沿相反方向离开平衡位置,这时A又会受到反向弹性力,使A又回到平衡位置,这样质点A在平衡位置来回往复运动,产生振动。与此同时,A周围的质点也会受到大小相等方向相反的弹性力的作用,使它们离开平衡位置,并在各自的平衡位置附近振动。这样弹性介质中一个质点的振动就会引起邻近质点的振动,邻近质点的振动又会引起较远质点的振动,于是振动就以一定的速度由近及远地传播开来
7、,从而就形成了机械波。液体和气体不能用上述弹性力的模型来描述,其弹性波是在受到压力时体积的收缩和膨胀产生的。产生机械波的两个基本条件 (1)要有作机械振动的波源。(2)要有能传播机械振动的弹性介质 机械振动与机械波的关系 互相关联,振动是产生机械波的根源,机械波是振动状态的传播。波动中介质各质点并不随波前进,而是按照与波源相同的振动频率在各自的平衡位置上振动,并将能量传递给周围的质点。因此,机械波的传播不是物质的传播,而是振动状态和能量的传播。(1)周期T和频率f:为波动经过的介质质点产生机械振动的周期和频率,机械波的周期和频率只与振源有关,与传播介质无关。波动频率也可定义为波动过程中,任一给
8、定点在1秒钟内所通过的完整波的个数,与该点振动频率数值相同,单位为赫兹(Hz)。(2)波长:波经历一个完整周期所传播的距离,称为波长,用表示。同一波线上相邻两振动相位相同的质点间的距离即为波长。波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离。波长的常用单位为米(m)或毫米(mm)。(3)波速C:波动中,波在单位时间内所传播的距离称为波速,用C表示。常用单位为米/秒(m/s)或千米/秒(km/s)。波速、波长和频率的关系式:C=f或=C/f 波长与波速成正比,与频率成反比。当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。次声波、声波和超声波 次声波:频率2
9、0Hz 声波:频率在2020000Hz之间,超声波:频率20000Hz,对钢等金属材料的检测,常用的频率为0.510MHz 超声波特点:方向性好能量高能在界面上产生反射、折射、衍射和波型转换穿透能力强 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。脉冲反射法:声源产生的脉冲波进入到试件中超声波在试件中以一定方向和速度向前传播遇到两侧声阻抗有差异的界面时
10、部分声波被反射检测设备接收和显示分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。通常用来发现和对缺陷进行评估的基本信息为:1、是否存在来自缺陷的超声波信号及其幅度;2、入射声波与接收声波之间的传播时间;3、超声波通过材料以后能量的衰减。根据波动传播时介质质点的振动方向相对于波的传播方向的不同,可将波动分为多种波型,在超声检测中主要应用的波型有纵波、横波、表面波和板波等.据波阵面形状不同,可以把不同波源发出的波分为平面波、柱面波和球面波。波源振动的持续时间长短,分为连续波和脉冲波1、纵波L定义:介质中质点的振动方向与波的传播方向互相平行的波,称为纵波,用L表示。纵波中介质质点
11、受到交变拉压应力作用并产生伸缩形变,故纵波亦称为压缩波。而且,由于纵波中的质点疏密相间,故又称为疏密波。凡能承受拉伸或压缩应力的介质都能传播纵波。固体介质能承受拉伸或压缩应力,因此固体介质可以传播纵波。液体和气体虽然不能承受拉伸应力,但能承受压应力产生容积变化,因此液体和气体介质也可以传播纵波。质点振动方向波动传播方向横波S(T)定义介质中质点的振动方向与波的传播方向互相垂直的波,称为横波,用S或T表示。横波中介质质点受到交变的剪切应力作用并产生切变形变,故横波又称为切变波。只有固体介质才能承受剪切应力,液体和气体介质不能承受剪切应力,故横波只能在固体介质中传播,不能在液体和气体介质中传播。质
12、点振动方向波动传播方向定义:当介质表面受到交变应力作用时,产生沿介质表面传播的波,称为表面波,常用R表示,表面波是瑞利1887年首先提出来的,因此表面波又称瑞利波。也可以认为表面波在介质表面传播时,介质表面质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于波的传播方向。椭圆运动可视为纵向振动与横向振动的合成,即纵波与横波的合成。因此表面波同横波一样只能在固体介质中传播,不能在液体或气体介质中传播。表面波只能在固体表面传播。表面波的能量随传播深度增加而迅速减弱。当传播深度超过两倍波长时,质点的振幅就已经很小了。因此,一般认为,表面波检测只能发现距工件表面两倍波长深度内的缺陷。波传播方向空气固
13、体介质 定义:在板厚与波长相当的簿板中传播的波,称为板波。根据质点的振动方向不同可将板波分为SH波和兰姆波。(1)SH波:SH波是水平偏振的横波在簿板中传播的波。簿板中各质点的振动方向平行于板面而垂直于波的传播方向,相当于固体介质表面中的横波。(2)兰姆波:兰姆波又分为对称型(S型)和非对称型(A型),如图1.9所示。对称型(S型):簿板中心质点作纵向振动,上下表面质点作椭圆运动、振动相位相反并对称于中心。非对称型(A型):簿板中心质点作横向振动,上下表面质点作椭圆运动、相位相同,不对称。波的类型质点振动特点传播介质应用纵波质点振动方向平行于波传播方向固、液、气体钢板、锻件检测等横波质点振动方
14、向垂直于波传播方向固体、特别粘的薄液层焊缝、钢管检测等表面波质点作椭圆运动,椭圆长轴垂直波传播方向,短轴平行于波传播方向固体表面,且固体的厚度远大于波长钢管检测等板波对称型(S S型)上下表面:椭圆运动,中心:纵向振动固体介质(厚度为几个波长的的薄板)6mmCSCR 在同一种固体材料中,纵波声速大于横波声速,横波声速又大于表面波声速。对于钢材1.8:1:0.9 总结:细长棒中的纵波声速在细长棒中(棒径d)轴向传播的纵波声速与无限大介质中纵波声速不同,细长棒中的纵波声速为:LbEC固体介质中声速与温度、应力、均匀性的关系 固体介质中的声速与介质温度、应力、均匀性有关。一般固体中的声速随介质温度升
15、高而降低。固体介质的应力状况对声速有一定的影响,一般应力增加,声速增加,但增加缓慢。固体材料组织均匀性对声速的影响在铸铁中表现较为突出。铸铁表面与中心,由于冷却速度不同而具有不同的组织,表面冷却快,晶粒细,声速大;中心冷却慢,晶粒粗,声速小。此外,铸铁中石墨含量和尺寸对声速也有影响,石墨含量和尺寸增加,声速减少。1.液体、气体中声速公式 由于液体和气体只能承受压应力,不能承受剪切应力,因此液体和气体介质中只能传播纵波,不能传播横波和表面波。液体和气体中的纵波波速为:2.液体、气体介质中的纵波声速与其容变弹性模量和密度有关,介质的容变弹性模量愈大、密度愈小,声速就愈大3.在液体和气体中的纵波声速
16、是容变弹性模量和密度的函数。弹性模量越大、密度越小,声速就越大。多数介质密度随温度升高而降低,容变弹性模量减小,因而声速随温度升高而降低。但是水例外,温度在74C左右时声速最大,当温度低于74C时,声速随温度升高而增大;当温度高于74C时,声速随温度升高而降低。1.超声检测仪器测量法 对检测人员来说,用检测仪器测量声速是最简便的。用这种方法测量,可用单探头反射法,也可用双探头穿透法。可用于测量纵波声速,也可用于测量横波声速。(1)检测仪按时间刻度:反射法 直射法(2)检测仪按深度刻度:对于按深度刻度的检测仪,不能直接从示波屏上读出时间,这时需要采用对比法来测声速;方法如下图 方法:1,测试时,
17、先把探头对准 待测工件的 底面,调节仪器使 底面回波对准某一刻t,这时超 声波通过工作的时间为:2,然后将探头放在水中,调节 探头位置使水层底面回波对准同 一平刻度t,这时超声波通过水层的时间为:由于二者所对刻度相同,即时间相同。2.测厚仪测量法3.示波器测量法;示波器的水平坐标是按时间刻度的,因此按图所示将检测仪与示波器连接以后就可以从示波器荧光屏上直接读取始脉冲与底波之间的时间差,从而计算出声速。1,设入射波的声压为P0(声强为I0)、反射波的声压为Pr(声强为Ir)、透射波的声压为Pt(声强为It)。2,界面上反射波声压P与入射波声压P0之比称为界面的声压反射率,用r表示,即r=Pr/P
18、0。3,界面上透射波声压Pt与入射波声压P0之比称为界面的声压透射率,用t表示,即t=Pt/P0在界面两侧的声波,必须符合下列两个条件:(1)界面两侧的总声压相等,即p0+pr=pt。(相位关系,力平衡)(2)界面两侧质点振动速度幅值相等,即(p0-pr)/Z1=pt/Z2(能量平衡)由上述两边界条件和声压反射率、透射率定义得:解上述联立方程得声压反射率r和透射率t分别为:1,界面上反射波声强Ir与入射波声强I0之比称为声强反射率,用R表示。2,界面上透射波声强It与入射波声强I0之比称为声强透射率,用T表示。3,超声波垂直入射到平界面上时,声压或声强的分配比例仅与界面两侧介质的声阻抗有关。由
19、以上几式可以导出:讨论几种常见界面上的声压、声强反射和透射情况二:讨论几种常见界面上的声压、声强反射和透射情况三:讨论几种常见界面上的声压、声强反射和透射情况四:超声检测时,经常遇到耦合层和缺陷薄层等问题,这些都可归结为超声波在薄层界面的反射和透射问题。此时,超声波是由声阻抗为Z1的第一介质入射到Z1和Z2界面,然后通过声阻抗为Z2的第二介质薄层射到Z2和Z3界面,最后进入声阻抗为Z3的第三介质。超声波通过一定厚度的异质薄层时,反射和透射情况与单一的平界面不同。异质薄层很薄,进入薄层内的超声波会在薄层两侧界面引起多次反射和透射,形成一系列的反射波和透射波 薄层界面反射透射示意图超声波通过异质薄
20、层时的声压反射率和透射率不仅与介质声阻抗和薄层声阻抗有关,而且与薄层厚度同其波长之比d2/2有关 1.均匀介质中的异质薄层(Z1=Z3Z2)(1)当 (n为整数)时,。这说明当薄层两侧介质声阻抗相等,薄层厚度为其半波长的整数倍时,超声波全透射,几乎无反射,好象不存在异质薄层一样。这种透声层常称为半波透声层。(2)(n为整数)时,即异质薄层厚度等于其四分之一波长的奇数倍时,声压透射率最低,声压反射率最高。2薄层两侧介质不同的双界面(1)当 (n为整数)时,。这说明超声波垂直入射到两侧介质声阻抗不同的薄层时,若薄层厚度等于半波长的整数倍,则通过薄层的声强透射率与薄层的性质无关,好象不存在薄层一样
21、(2)(n为整数)时,且 时,此时T1,即声强透射率等于1,超声波全透射,这对直探头保护膜的设计具有重要指导意义。在超声波单探头检测中,探头兼作发射和接收超声波。探头发出的超声波透过界面进入工件,在固/气底面产生全反射后再次通过同一界面被探头接收这时探头接收到的回波声压与入射波声压之比,称为声压往复透射率T往声压往复透射率与界面两侧介质的声阻抗有关,与从何种介质入射到界面无关。界面两侧介质的声阻抗相差愈小,声压往复透射率就愈高,反之就愈低。往复透射率高低直接影响检测灵敏度高低,往复透射率高,检测灵敏度高。反之,检测灵敏度低1,波型转换与反射、折射定律 当超声波倾斜入射到界面时,除产生同种类 型
22、的反射和折 射波外,还会产生不同类型的反射和折射波,这种现象称为波型转换2,当超声波垂直入射到光滑平界面时,将在第一介质中产生一个与入射波方向相反的反射波,在第二介质中产生一个与入射波方向相同的透射波(见图)1纵波斜入射 当纵波L倾斜入射到界面时,除产生反射纵波L和折射纵波L外,还会产生反射横波S和折射横波S。各种反射波和折射波方向符合反射、折射定律:由于在同一介质中纵波波速不变,因此 。又由于在同一介质中纵波波速大于横波波速,因此(1)第一临界角,由反射折射定律(2)第二临界角由 和 的定义可知:L 时,第二介质中既有折射纵波L又有折射横波S。L=时,第二介质中只有折射横波S,没有折射纵波L
23、,这就是常用横波探头制作和横波检测的原理。L 时,第二介质中既无折射纵波L,又无折射横波S。这时在其介质的表面存在表面波R,这就是常用表面波探头的制作原理。例如,纵波倾斜入射到有机玻璃/钢界面时,有机玻璃中cL1=2730m/s,水中cL水=1480m/s,钢中:cL2=5900m/s,cS2=3230m/s。则第一、二临界角分别为:2横波斜入射1.纵波倾斜入射到钢/空气界面的反射 纵波倾斜入射,当 aL=60左右时产生一个较强的变型反射横波。2.横波倾斜入射到钢/空气界面的反射 当 as=30 左右时,rss 很低,rsL 较高。当 as33.2时,rss=100%即钢中横波全反射 超声检测
24、中,常常采用反射法,超声波往复透过同一探侧面,因此声压往复透射率更具有实际意义。超声波倾斜入射,折射波全反射,探头接收到的回波声压Pa 与入射波声压P0之比称为声压往复透射率,常用T表示,T=Pa/P0。见 图 超声波在两个平面构成的直角内的反射叫做端角反射。在端角反射中,超声波经历了两次反射,当不考虑波型转换时,二次反射回波与入射波互相平行,即 回波声压Pa与入射波声压P0之比称为端角反射率,用T端表示。(1)纵波入射时,端角反射率都很低,这是因为纵波在端角的两次反射中分离出较强的横波。(2)横波入射时,入射角 as=30 或 60 附近时,端角反射率最低。时,端角反射率达100%。为了便于
25、讨论,不考虑波型转换行为。1.平面波 平面波波束不扩散,而是互相平行,因此声压不随距离而变化。2.球面波 球面波的波阵面为同心球面,球面波声场中的某处质点的振幅与该点至波源的距离成反比,而声压又与振幅成正比,因此球面波的声压与距离成反比。3.柱面波 柱面波的波阵面为同轴柱面,柱面波声场中某处质点的振幅与该点至波源的距离的平方根成反比,而声压与振幅成正比,因此柱面波的声压与距离的平方根成反比。1.单一的平界面上的反射2.双界面的反射 前壁各次反射波声压比为 后壁各次波的声压比 实际检测中,当d较大时,超声波探头发出的超声波可视为球面波,示波屏上各次底面反射波的高度之比近似符合 的规律 3.单一平
展开阅读全文