新型压裂液概述课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新型压裂液概述课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新型 压裂液 概述 课件
- 资源描述:
-
1、目目 录录3PPT学习交流压裂的定义压裂的定义 压裂压裂就是利用地面高压泵就是利用地面高压泵车车(组组),以高于储层吸入能力,以高于储层吸入能力的速度,向井下注入高粘度压的速度,向井下注入高粘度压裂液,使井筒内压力增高,一裂液,使井筒内压力增高,一直达到克服地层的压缩应力和直达到克服地层的压缩应力和岩石的张力强度,岩石出现破岩石的张力强度,岩石出现破裂,形成对称于井眼的裂缝的裂,形成对称于井眼的裂缝的过程。过程。4PPT学习交流压裂的作用与目的压裂的作用与目的 在注入压裂液时携带一定粒径的固体支撑物(粒在注入压裂液时携带一定粒径的固体支撑物(粒径径0.41.0mm的天然石英砂或人造高强度陶粒)
2、,使的天然石英砂或人造高强度陶粒),使其按需要模式停留在裂缝里,使其按需要模式停留在裂缝里,使支撑裂缝支撑裂缝保持一定的保持一定的张开程度。在压裂液破胶返排后,这些裂缝为地层中张开程度。在压裂液破胶返排后,这些裂缝为地层中的油气提供了高导流能力的通道,从而的油气提供了高导流能力的通道,从而提高了油气井提高了油气井的产量的产量。5PPT学习交流压裂工艺压裂工艺压后管理压后管理压裂液压裂液压裂液压裂液压裂压裂 工艺工艺 压后压后 管理管理低伤害压裂工艺低伤害压裂工艺储层特征储层特征气价气价?压裂的内涵与发展方向压裂的内涵与发展方向6PPT学习交流压裂液及其作用压裂液及其作用 压裂液压裂液是压裂改造
3、油气层过程中的全部工作液。是压裂改造油气层过程中的全部工作液。它起着它起着传递压力传递压力、形成地层裂缝形成地层裂缝和沿着张开的裂缝和沿着张开的裂缝输输送支撑剂送支撑剂的作用。的作用。压裂液是个总称,注入井内的压裂液在不同的阶压裂液是个总称,注入井内的压裂液在不同的阶段有各自的任务。段有各自的任务。7PPT学习交流1.滤失量低滤失量低;2.悬浮性能好悬浮性能好;3.摩阻损失小摩阻损失小;4.对地层渗透率损害小(配伍性好、低残渣、易返排)对地层渗透率损害小(配伍性好、低残渣、易返排);5.性能稳定(热稳定性、剪切稳定性);性能稳定(热稳定性、剪切稳定性);6.成本低。成本低。对压裂液的性能要求对
4、压裂液的性能要求8PPT学习交流对地层降温冷却和预处对地层降温冷却和预处理,以减少后续主工作理,以减少后续主工作液对地层的伤害。一般液对地层的伤害。一般为活性水。为活性水。传递压力,使地层破裂,传递压力,使地层破裂,产生裂缝以备后面的携产生裂缝以备后面的携砂液进入。在温度较高砂液进入。在温度较高的地层,它还可以进一的地层,它还可以进一步起到降温作用。一般步起到降温作用。一般为高粘冻胶。为高粘冻胶。将支撑剂带入裂缝中并将支撑剂带入裂缝中并将砂子分布在预定的位将砂子分布在预定的位置上。同时可使裂缝延置上。同时可使裂缝延伸和继续冷却地层。它伸和继续冷却地层。它在压裂液中的份量最大。在压裂液中的份量最
5、大。一般为交联冻胶。一般为交联冻胶。将携砂液送到预定的位将携砂液送到预定的位置。一般为活性水。置。一般为活性水。压裂液压裂液预前置液预前置液前前 置置 液液携携 砂砂 液液顶顶 替替 液液对压裂液的性能要求对压裂液的性能要求9PPT学习交流常见压裂液类型及特性常见压裂液类型及特性压裂液类型压裂液类型主要特性主要特性应用对象应用对象水基压裂液水基压裂液耐温性好,摩阻小,携砂能力强,耐温性好,摩阻小,携砂能力强,成本低,操作安全成本低,操作安全砂岩或灰岩地层砂岩或灰岩地层油基压裂液油基压裂液配伍性好,摩阻大,携砂能力差,配伍性好,摩阻大,携砂能力差,成本较高,操作不安全成本较高,操作不安全水敏性地
6、层水敏性地层醇基压裂液醇基压裂液伤害小,易返排,耐温性差,伤害小,易返排,耐温性差,携砂能力差,操作不安全携砂能力差,操作不安全低压,水敏性地层低压,水敏性地层泡沫压裂液泡沫压裂液易返排,对油层污染小,易返排,对油层污染小,携砂能力差,耐温性差携砂能力差,耐温性差低压,水敏性地层低压,水敏性地层乳状压裂液乳状压裂液伤害小,但摩阻很大,伤害小,但摩阻很大,携砂能力差,耐温性差携砂能力差,耐温性差水敏、致密型地层水敏、致密型地层酸基压裂液酸基压裂液可提高裂缝导流能力,可提高裂缝导流能力,对设备腐蚀性强,操作不安全对设备腐蚀性强,操作不安全碳酸盐地层碳酸盐地层10PPT学习交流 目前,国外广泛使用的
7、压裂液体系包括前四类;目前,国外广泛使用的压裂液体系包括前四类;20世纪世纪50年代年代以油基压裂液为主;以油基压裂液为主;50年代末年代末60年代初年代初,随着胍尔胶稠化剂的问世,水基压裂液不,随着胍尔胶稠化剂的问世,水基压裂液不断地发展与完善,水力压裂在油田的应用日渐广泛,增产效果也更断地发展与完善,水力压裂在油田的应用日渐广泛,增产效果也更加显著。加显著。1969年年首次使用交联胍胶压裂液;首次使用交联胍胶压裂液;进入进入70年代年代,由于胍尔胶稠化剂化学改性的成功,以及交联剂,由于胍尔胶稠化剂化学改性的成功,以及交联剂体系的完善,水基压裂液迅速发展,在压裂液类型中占主导地位。体系的完善
8、,水基压裂液迅速发展,在压裂液类型中占主导地位。目前,目前,水基压裂液在生产中的应用依然广泛水基压裂液在生产中的应用依然广泛,占,占70%以上。以上。压裂液的发展历程压裂液的发展历程11PPT学习交流水基压裂液水基压裂液 水基压裂液水基压裂液的发展经历了活性水压裂液、稠化水压裂液、水基冻胶的发展经历了活性水压裂液、稠化水压裂液、水基冻胶压裂液三个阶段。压裂液三个阶段。(1)活性水压裂液活性水压裂液:是表面活性剂的稀的水溶液。是表面活性剂的稀的水溶液。(2)稠化水压裂液稠化水压裂液:是以稠化剂及表面活性剂配制的粘稠水溶液,即:是以稠化剂及表面活性剂配制的粘稠水溶液,即增稠了的活性水压裂液。增稠了
9、的活性水压裂液。(3)水冻胶压裂液水冻胶压裂液:是用交联剂将溶于水的增稠剂高分子进行不完全:是用交联剂将溶于水的增稠剂高分子进行不完全交联,使具有线性结构的高分子水溶液变成线型和网状体型结构混存的交联,使具有线性结构的高分子水溶液变成线型和网状体型结构混存的高分子水冻胶。其中亦添加了表面活性剂。它实际上就是交联了的稠化高分子水冻胶。其中亦添加了表面活性剂。它实际上就是交联了的稠化水压裂液。水压裂液。12PPT学习交流因为剪切敏感、温度稳定性差只适因为剪切敏感、温度稳定性差只适用于低温、浅井、低砂量和低砂比用于低温、浅井、低砂量和低砂比的小型解堵性压裂。的小型解堵性压裂。解决了线型压裂液进行高温
10、深井压解决了线型压裂液进行高温深井压裂施工引起的剪切敏感、温度稳定裂施工引起的剪切敏感、温度稳定性差等许多问题。性差等许多问题。水水基基压压裂裂液液线型压裂液线型压裂液交联压裂液交联压裂液活性水压裂液活性水压裂液稠化水压裂液稠化水压裂液水冻胶压裂液水冻胶压裂液13PPT学习交流水稠化剂(成胶剂)水稠化剂(成胶剂)添加剂添加剂1 成胶液成胶液水添加剂水添加剂2交联剂交联剂 交联液交联液水冻胶压裂液组成水冻胶压裂液组成14PPT学习交流水冻胶压裂液添加剂水冻胶压裂液添加剂稠化剂 植物胶及衍生物植物胶及衍生物 胍胶(羟丙基胍胶)胍胶(羟丙基胍胶)田箐、香豆胶、魔芋胶等田箐、香豆胶、魔芋胶等 纤维素衍
11、生物纤维素衍生物 羧甲基纤维素钠盐(羧甲基纤维素钠盐(CMC)羟乙基纤维素(羟乙基纤维素(HEC)羧甲基羟乙基纤维素(羧甲基羟乙基纤维素(CMHEC)生物聚多糖生物聚多糖 黄原胶黄原胶 工业合成聚合物工业合成聚合物 聚丙烯酰胺(聚丙烯酰胺(PAM)部分水解聚丙酰胺(部分水解聚丙酰胺(PHPAM)甲叉基聚丙烯酰胺(甲叉基聚丙烯酰胺(MPAM)15PPT学习交流常用的水基压裂液稠化剂及粘度性能增稠剂增稠剂类型类型名名 称称使用浓使用浓度度/%粘度粘度/mPa s测量测量条条件件植物胶植物胶及及其衍生其衍生物物胍胶胍胶(G)(G)0.30.680230Fan35Fan35旋旋转转粘度粘度计计在在25
12、25,100r/100r/mimin n下测下测定。定。羟丙基胍胶羟丙基胍胶(HPG)(HPG)0.40.750130田菁胶田菁胶(T)(T)0.50.8120160羟丙基田菁胶羟丙基田菁胶(HPT)(HPT)0.50.885125纤维素纤维素衍生衍生物物羟乙基纤维素羟乙基纤维素(HEC)(HEC)0.40.6200300羧甲基羟乙基纤羧甲基羟乙基纤维素维素(CMHEC)(CMHEC)0.40.6100200生物聚生物聚多糖多糖黄原胶黄原胶(XT)0.050.1100300合成聚合成聚合物合物甲叉基聚丙烯酰甲叉基聚丙烯酰胺胺(MPAM)(MPAM)0.40.615030016PPT学习交流 交
13、联剂 两性金属(非金属)含氧酸盐两性金属(非金属)含氧酸盐 硼酸盐、铝酸盐、锑酸盐和钛酸盐等、铝酸盐、锑酸盐和钛酸盐等 弱酸强弱酸强碱盐碱盐 无机盐类两性金属盐无机盐类两性金属盐 如硫酸铝、氯化铬、硫酸铜、氯化锆等强酸如硫酸铝、氯化铬、硫酸铜、氯化锆等强酸弱碱盐弱碱盐 无机酸脂无机酸脂 如如硼酸酯、钛酸酯、锆酸酯 醛类醛类 甲醛、乙醛、乙二醛等甲醛、乙醛、乙二醛等水冻胶压裂液添加剂水冻胶压裂液添加剂17PPT学习交流破胶剂 生物酶生物酶 适用温度适用温度21 54,pH值范围值范围pH=3 8,最佳最佳pH=5 氧化破胶剂氧化破胶剂 适用于适用于 pH=3 14。普通氧化破胶剂适用温度。普通氧
14、化破胶剂适用温度 5493;延迟活化氧化破胶剂适用温度;延迟活化氧化破胶剂适用温度 83116,常用氧化破胶剂是,常用氧化破胶剂是过硫酸盐。有机弱酸有机弱酸 很少用作水基压裂液的破胶剂很少用作水基压裂液的破胶剂,适用温度大于适用温度大于93。水冻胶压裂液添加剂水冻胶压裂液添加剂18PPT学习交流降滤剂:降滤剂:降低压裂液在施工过程中的液体滤失量降低压裂液在施工过程中的液体滤失量防膨剂防膨剂:防止粘土水化膨胀和分散运移防止粘土水化膨胀和分散运移杀菌剂杀菌剂:杀灭高分子水溶液中的细菌,保证基液不变质杀灭高分子水溶液中的细菌,保证基液不变质助排剂助排剂:降低破胶后液体表面张力,利于返排降低破胶后液体
15、表面张力,利于返排p值调节剂值调节剂:使压裂液具有一定的使压裂液具有一定的pH值缓冲能力值缓冲能力稳定剂稳定剂:用来提高压裂液的耐温能力用来提高压裂液的耐温能力其它助剂其它助剂水冻胶压裂液添加剂水冻胶压裂液添加剂19PPT学习交流压裂液的关键压裂液的关键 压裂液粘度控制压裂液粘度控制是获得最佳压裂效果的最重要前提条是获得最佳压裂效果的最重要前提条件之一。件之一。压裂液的粘度控制大体分为压裂液的粘度控制大体分为泵送入井泵送入井、造缝造缝和和排液排液三三个阶段。由于不同阶段的粘度控制直接影响到最终的压裂个阶段。由于不同阶段的粘度控制直接影响到最终的压裂效果,因而不同阶段对压裂液粘度特性的要求也就不
16、同。效果,因而不同阶段对压裂液粘度特性的要求也就不同。20PPT学习交流压裂液的关键压裂液的关键相应阶段的压裂液粘度控制应满足以下要求:相应阶段的压裂液粘度控制应满足以下要求:泵送阶段泵送阶段的压裂液初始粘度控制在的压裂液初始粘度控制在满足悬砂满足悬砂和和低摩阻低摩阻的适中的适中水平;水平;造缝阶段造缝阶段的压裂液粘度尽可能达到的压裂液粘度尽可能达到最大造缝能力的高水平最大造缝能力的高水平;排液阶段排液阶段的水化液粘度降到的水化液粘度降到最低水平最低水平。从而获得最佳的压裂。从而获得最佳的压裂效果。效果。21PPT学习交流22PPT学习交流现有装备现有装备机组型号机组型号投产投产时间时间主要设
17、备情况主要设备情况备注备注仪表车仪表车(台)(台)混砂车混砂车(台)(台)主压车主压车(台)(台)史蒂文森史蒂文森压裂机组压裂机组198519851 11 16 6设备严重老化,满足不了油田内部压设备严重老化,满足不了油田内部压裂需要,目前在陕北施工裂需要,目前在陕北施工 哈里伯顿哈里伯顿-1000-1000198519851 11 16 6设备老化,不能适应高压大排量需要设备老化,不能适应高压大排量需要哈里伯顿哈里伯顿-1400-1400199019901 11 16 6设备老化,不能适应高压大排量需要设备老化,不能适应高压大排量需要哈里伯顿哈里伯顿-2000-2000200220021 1
18、2 28 8主力车组主力车组史蒂文森史蒂文森COCO2 2泡沫压裂设备泡沫压裂设备20022002低压低压COCO2 2泵车泵车2 2台台20m20m3 3 CO CO2 2储运罐车储运罐车6 6台台引进以来,进行了引进以来,进行了6 6口井的口井的COCO2 2吞吐施吞吐施工,未投入压裂施工工,未投入压裂施工哈里伯顿哈里伯顿-2500-2500200820081 11 16 6逐渐投入现场逐渐投入现场23PPT学习交流常用压裂液体系常用压裂液体系 水基冻胶压裂液水基冻胶压裂液 清洁压裂液清洁压裂液 二氧化碳泡沫压裂液二氧化碳泡沫压裂液 胶凝酸酸压体系胶凝酸酸压体系24PPT学习交流常用压裂液
19、体系常用压裂液体系 水基冻胶压裂液水基冻胶压裂液 1985年,引进甲叉基聚丙烯酰胺压裂液,因抗温性差,摩阻高,年,引进甲叉基聚丙烯酰胺压裂液,因抗温性差,摩阻高,配制复杂,在配制复杂,在1994年淘汰。年淘汰。1990年,使用羟丙基田菁年,使用羟丙基田菁(HT-21)胶压裂液,以有机钛胶压裂液,以有机钛/锆或硼酸锆或硼酸盐做交联剂,耐温可达盐做交联剂,耐温可达150。因质量不稳定、货源等因素,该。因质量不稳定、货源等因素,该压裂液在压裂液在90年代中期被淘汰。年代中期被淘汰。1993年,使用羟丙基胍胶压裂液,以有机硼、有机锆、固体硼年,使用羟丙基胍胶压裂液,以有机硼、有机锆、固体硼等为交联剂,
20、耐温可达等为交联剂,耐温可达170。目前该压裂液体系在大面积使。目前该压裂液体系在大面积使用。用。25PPT学习交流常用压裂液体系常用压裂液体系 清洁压裂液清洁压裂液2004年在中原油田试验应用,因高温下使用年在中原油田试验应用,因高温下使用成本高,无法进行大规规模推广应用。成本高,无法进行大规规模推广应用。2002年随二氧化碳机组引进,在文年随二氧化碳机组引进,在文23气田试气田试验三口井,因工艺和货源问题,未能推广。验三口井,因工艺和货源问题,未能推广。2006年随普光气田开发引进,普光年随普光气田开发引进,普光2、双庙、双庙1井取得成功,使普光气田未来投产的主要井取得成功,使普光气田未来
21、投产的主要措施。措施。二氧化碳二氧化碳泡沫压裂液泡沫压裂液 胶凝酸酸压体系胶凝酸酸压体系26PPT学习交流水基冻胶压裂液常用化学剂水基冻胶压裂液常用化学剂 成胶剂成胶剂 交联剂交联剂 破胶剂破胶剂羟丙基胍胶羟丙基胍胶(山东大王、三力化工等)(山东大王、三力化工等)C-200有机硼有机硼C-150有机硼锆复合交联剂有机硼锆复合交联剂C-150H有机硼锆复合交联剂有机硼锆复合交联剂固体高温硼交联剂固体高温硼交联剂OB-99系列有机硼交联剂系列有机硼交联剂ZB-03高温有机硼锆复合交联剂高温有机硼锆复合交联剂过硫酸铵过硫酸铵胶囊破胶剂胶囊破胶剂支撑裂缝处理剂支撑裂缝处理剂27PPT学习交流常用交联剂
22、性能指标常用交联剂性能指标交联剂名称交联剂名称交联范围交联范围pH适用井温适用井温 交联时间交联时间min硼砂硼砂8-11900.5以内以内C-2009.0-11.01101C-1509.0-11.012025C-150h9.0-12.513025固体交联剂固体交联剂9.0-13.0130OB-998.0-10.09013526ZB-038.0-10.01352828PPT学习交流29PPT学习交流传统聚合物压裂液的伤害特征传统聚合物压裂液的伤害特征按压裂液作用位置分地层基质伤害地层基质伤害支撑裂缝伤害支撑裂缝伤害液体伤害液体伤害固体伤害固体伤害压裂液滤饼和浓缩胶压裂液滤饼和浓缩胶按流体性质分
23、30PPT学习交流压裂液对储层的伤害压裂液对储层的伤害 压裂液在地层中滞留产生液堵 地层粘土矿物水化膨胀和分散运移产生的伤害 压裂液与原油乳化造成的地层伤害 润湿性发生反转造成的伤害 压裂液残渣对地层造成的损害 压裂液对地层的冷却效应造成地层伤害 压裂液滤饼和浓缩对地层的伤害31PPT学习交流压裂液固相堵塞压裂液固相堵塞来源基液或成胶物质的不溶物降滤剂或支撑剂中的微粒压裂液对地层岩石浸泡而脱落下来的微粒化学反应沉淀物等固相颗粒。作用形成滤饼后阻止滤液侵入地层更远处,提高了压裂液效率,减少了对地层的伤害;它又要堵塞地层及裂缝内孔隙和喉道,增强了乳化液的界面膜厚度而难破胶。32PPT学习交流压裂液
24、浓缩压裂液浓缩 压裂液的不断滤失和裂缝闭合,导致交联聚合物在支撑裂缝内的浓度越来越高(即浓缩)。支撑剂铺置浓度对压裂液浓缩因子有较大影响,随着铺砂浓度降低,压裂液浓缩因子提高,此时不可能用常规破胶剂用量实现高浓缩压裂液的彻底破胶,形成大量残胶而严重影响支撑裂缝导流能力。33PPT学习交流常规胍胶压裂液的伤害机理常规胍胶压裂液的伤害机理 除水不溶物外,半乳糖支链破胶过程被切除造成额外的残渣除水不溶物外,半乳糖支链破胶过程被切除造成额外的残渣OOnOHOHHOOHOHOHHO2CH2CHOOHHO2CHOOOOOHOHHOOH2CHOmOHOHHO2CHOOHHO2CHOOORO侧基去除,主链向纤
25、维素的螺旋结构转化,引起聚合物水溶性降低,产生次生残渣34PPT学习交流胍胶残渣对导流能力的伤害胍胶残渣对导流能力的伤害图图1 导流率导流率 孔隙率关系孔隙率关系图图2 导流率导流率 起始胍胶浓度起始胍胶浓度35PPT学习交流残余的胍胶在残余的胍胶在裂缝内部的分裂缝内部的分布状况布状况 压裂液滤失 容易形容易形成定向排列成定向排列胍胶残渣对导流能力的伤害胍胶残渣对导流能力的伤害36PPT学习交流 随着人们对常规聚合物压裂液伤害特征认识的不随着人们对常规聚合物压裂液伤害特征认识的不断深入,发展新型断深入,发展新型低伤害低伤害、甚至、甚至无伤害无伤害的压裂液体系的压裂液体系已经逐渐变成了现实。已经
展开阅读全文