九年级数学下学期《锐角三角函数》测试题训练参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《九年级数学下学期《锐角三角函数》测试题训练参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角函数 九年级 数学 下学 锐角三角 函数 测试 训练 参考 模板 范本 下载 _考试试卷_数学_初中
- 资源描述:
-
1、九年级数学下学期锐角三角函数测试题训练测试1 锐角三角函数定义学习要求理解一个锐角的正弦、余弦、正切的定义能依据锐角三角函数的定义,求给定锐角的三角函数值课堂学习检测一、填空题1如图所示,B、B是MAN的AN边上的任意两点,BCAM于C点,BCAM于C点,则BAC_,从而,又可得_,即在RtABC中(C90),当A确定时,它的_与_的比是一个_值;_,即在RtABC中(C90),当A确定时,它的_与_的比也是一个_;_,即在RtABC中(C90),当A确定时,它的_与_的比还是一个_第1题图2如图所示,在RtABC中,C90第2题图_,_;_,_;_,_3因为对于锐角a 的每一个确定的值,si
2、na 、cosa 、tana 分别都有_与它_,所以sina 、cosa 、tana 都是_又称为a 的_4在RtABC中,C90,若a9,b12,则c_,sinA_,cosA_,tanA_,sinB_,cosB_,tanB_5在RtABC中,C90,若a1,b3,则c_,sinA_,cosA_,tanA_,sinB_,cosB_,tanB_6在RtABC中,B90,若a16,c30,则b_,sinA_,cosA_,tanA_,sinC_,cosC_,tanC_7在RtABC中,C90,若A30,则B_,sinA_,cosA_,tanA_,sinB_,cosB_,tanB_二、解答题8已知:如
3、图,RtTNM中,TMN90,MRTN于R点,TN4,MN3求:sinTMR、cosTMR、tanTMR9已知RtABC中,求AC、AB和cosB综合、运用、诊断10已知:如图,RtABC中,C90D是AC边上一点,DEAB于E点DEAE12求:sinB、cosB、tanB11已知:如图,O的半径OA16cm,OCAB于C点,求:AB及OC的长12已知:O中,OCAB于C点,AB16cm,(1)求O的半径OA的长及弦心距OC;(2)求cosAOC及tanAOC13已知:如图,ABC中,AC12cm,AB16cm,(1)求AB边上的高CD;(2)求ABC的面积S;(3)求tanB14已知:如图,
4、ABC中,AB9,BC6,ABC的面积等于9,求sinB拓展、探究、思考15已知:如图,RtABC中,C90,按要求填空:(1)_;(2)b_,c_;(3)a_,b_;(4)_,_;(5) _,_;(6)3,_,_16已知:如图,在直角坐标系xOy中,射线OM为第一象限中的一条射线,A点的坐标为(1,0),以原点O为圆心,OA长为半径画弧,交y轴于B点,交OM于P点,作CAx轴交OM于C点设XOMa 求:P点和C点的坐标(用a 的三角函数表示)17已知:如图,ABC中,B30,P为AB边上一点,PDBC于D(1)当BPPA21时,求sin1、cos1、tan1;(2)当BPPA12时,求sin
5、1、cos1、tan1测试2 锐角三角函数学习要求1掌握特殊角(30,45,60)的正弦、余弦、正切三角函数值,会利用计算器求一个锐角的三角函数值以及由三角函数值求相应的锐角2初步了解锐角三角函数的一些性质课堂学习检测一、填空题1填表锐角a304560sinacosatana二、解答题2求下列各式的值(1)(2)tan30sin60sin30(3)cos453tan30cos302sin602tan45(4)3求适合下列条件的锐角a (1)(2)(3)(4)4用计算器求三角函数值(精确到0.001)(1)sin23_;(2)tan545340_5用计算器求锐角a (精确到1)(1)若cosa
6、0.6536,则a _;(2)若tan(2a 10317)1.7515,则a _综合、运用、诊断6已知:如图,在菱形ABCD中,DEAB于E,BE16cm,求此菱形的周长7已知:如图,在ABC中,BAC120,AB10,AC5求:sinACB的值8已知:如图,RtABC中,C90,BAC30,延长CA至D点,使ADAB求:(1)D及DBC;(2)tanD及tanDBC;(3)请用类似的方法,求tan22.59已知:如图,RtABC中,C90,作DAC30,AD交CB于D点,求:(1)BAD;(2)sinBAD、cosBAD和tanBAD10已知:如图ABC中,D为BC中点,且BAD90,求:s
7、inCAD、cosCAD、tanCAD拓展、探究、思考11已知:如图,AOB90,AOOB,C、D是上的两点,AODAOC,求证:(1)0sinAOCsinAOD1;(2)1cosAOCcosAOD0;(3)锐角的正弦函数值随角度的增大而_;(4)锐角的余弦函数值随角度的增大而_12已知:如图,CAAO,E、F是AC上的两点,AOFAOE(1)求证:tanAOFtanAOE;(2)锐角的正切函数值随角度的增大而_13已知:如图,RtABC中,C90,求证:(1)sin2Acos2A1;(2)14化简:(其中0a 90)15(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:si
8、n30_2sin15cos15;sin36_2sin18cos18;sin45_2sin22.5cos22.5;sin60_2sin30cos30;sin80_2sin40cos40;sin90_2sin45cos45猜想:若0a 45,则sin2a _2sina cosa (2)已知:如图,ABC中,ABAC1,BAC2a 请根据图中的提示,利用面积方法验证你的结论16已知:如图,在ABC中,ABAC,ADBC于D,BEAC于E,交AD于H点在底边BC保持不变的情况下,当高AD变长或变短时,ABC和HBC的面积的积SABCSHBC的值是否随着变化?请说明你的理由测试3 解直角三角形(一)学习
9、要求理解解直角三角形的意义,掌握解直角三角形的四种基本类型课堂学习检测一、填空题1在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在RtABC中,C90,ACb,BCa,ABc,第1题图三边之间的等量关系:_两锐角之间的关系:_边与角之间的关系:_;_;_;_直角三角形中成比例的线段(如图所示)第小题图在RtABC中,C90,CDAB于DCD2_;AC2_;BC2_;ACBC_直角三角形的主要线段(如图所示)第小题图直角三角形斜边上的中线等于斜边的_,斜边的中点是_若r是RtABC(C90)的内切圆半径,则r_直角三角形的面积公式在RtABC中,C90,SABC_(答案不唯一)2关
10、于直角三角形的可解条件,在直角三角形的六个元素中,除直角外,只要再知道_(其中至少_),这个三角形的形状、大小就可以确定下来解直角三角形的基本类型可分为已知两条边(两条_或斜边和_)及已知一边和一个锐角(_和一个锐角或_和一个锐角)3填写下表:已知条件解法一条边和斜边c和锐角AB_,a_,b_一个锐角直角边a和锐角AB_,b_,c_两条边两条直角边a和bc_,由_求A,B_直角边a和斜边cb_,由_求A,B_二、解答题4在RtABC中,C90(1)已知:a35,求A、B,b;(2)已知:,求A、B,c;(3)已知:,求a、b;(4)已知:求a、c;(5)已知:A60,ABC的面积求a、b、c及
11、B综合、运用、诊断5已知:如图,在半径为R的O中,AOB2a ,OCAB于C点(1)求弦AB的长及弦心距;(2)求O的内接正n边形的边长an及边心距rn6如图所示,图中,一栋旧楼房由于防火设施较差,想要在侧面墙外修建一外部楼梯,由地面到二楼,再从二楼到三楼,共两段(图中AB、BC两段),其中CCBB3.2m结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m)(参考数据:sin300.50,cos300.87,sin350.57,cos350.82)7如图所示,某公司入口处原有三级台阶,每级台阶高为20cm,台阶面的宽为30cm,为了方便残疾人士,拟将台阶改为坡角为12的斜坡
12、,设原台阶的起点为A,斜坡的起点为C,求AC的长度(精确到1cm)拓展、探究、思考8如图所示,甲楼在乙楼的西面,它们的设计高度是若干层,每层高均为3m,冬天太阳光与水平面的夹角为30(1)若要求甲楼和乙楼的设计高度均为6层,且冬天甲楼的影子不能落在乙楼上,那么建筑时两楼之间的距离BD至少为多少米?(保留根号)(2)由于受空间的限制,甲楼和乙楼的距离BD21m,若仍要求冬天甲楼的影子不能落在乙楼上,那么设计甲楼时,最高应建几层?9王英同学从A地沿北偏西60方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地多少距离?10已知:如图,在高2m,坡角为30的楼梯表面铺地毯,地
13、毯的长度至少需要多少米?(保留整数)测试4 解直角三角形(二)学习要求能将解斜三角形的问题转化为解直角三角形课堂学习检测1已知:如图,ABC中,A30,B60,AC10cm求AB及BC的长2已知:如图,RtABC中,D90,B45,ACD60BC10cm求AD的长3已知:如图,ABC中,A30,B135,AC10cm求AB及BC的长4已知:如图,RtABC中,A30,C90,BDC60,BC6cm求AD的长综合、运用、诊断5已知:如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30,测得岸边点D的俯角为45,又知河宽CD为50m现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求山的高度及缆
14、绳AC的长(答案可带根号)6已知:如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45,问该货轮继续向北航行时,与灯塔M之间的最短距离是多少?(精确到0.1海里,)7已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点已知BAC60,DAE45点D到地面的垂直距离,求点B到地面的垂直距离BC8已知:如图,小明准备测量学校旗杆AB的高度,当他发现斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC20m,斜坡
展开阅读全文