量子力学基础知识课堂讲授8学时1微观粒子的课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《量子力学基础知识课堂讲授8学时1微观粒子的课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子力学 基础知识 课堂 讲授 学时 微观粒子 课件
- 资源描述:
-
1、 第一章第一章 量子力学基础知识量子力学基础知识 (课堂讲授8学时)1.微观粒子的运动特征 2.量子力学基本假设 3.算符、本征方程及其解 4.势箱中自由粒子的势箱中自由粒子的薛定谔 方程及其解 十九世纪末,经典物理学已经形成一个相当十九世纪末,经典物理学已经形成一个相当完善的体系,机械力学方面建立了牛顿三大定律,完善的体系,机械力学方面建立了牛顿三大定律,热力学方面有吉布斯理论,电磁学方面用麦克斯热力学方面有吉布斯理论,电磁学方面用麦克斯韦方程统一解释电、磁、光等现象,而统计方面韦方程统一解释电、磁、光等现象,而统计方面有玻耳兹曼的统计力学。当时物理学家很自豪地有玻耳兹曼的统计力学。当时物理
2、学家很自豪地说,物理学的问题基本解决了,一般的物理都可说,物理学的问题基本解决了,一般的物理都可以从以上某一学说获得解释。唯独有几个物理实以从以上某一学说获得解释。唯独有几个物理实验还没找到解释的途径,而恰恰是这几个实验为验还没找到解释的途径,而恰恰是这几个实验为我们打开了一扇通向微观世界的大门。我们打开了一扇通向微观世界的大门。十九世纪末的物理学十九世纪末的物理学 电子、原子、分子和光子等微观粒子,具有波粒二电子、原子、分子和光子等微观粒子,具有波粒二象性的运动特征。这一特征体现在以下的现象中,而这些象性的运动特征。这一特征体现在以下的现象中,而这些现象均不能用经典物理理论来解释,由此人们提
3、出了量子现象均不能用经典物理理论来解释,由此人们提出了量子力学理论,这一理论就是本课程的一个重要基础。力学理论,这一理论就是本课程的一个重要基础。1.1.1黑体是一种能全部吸收照射到它上面的各种波长辐射的黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。带有一微孔的空心金属球,非常接近于黑体,进物体。带有一微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射、使射入的入金属球小孔的辐射,经过多次吸收、反射、使射入的辐射实际上全部被吸收。当空腔受热时,空腔壁会发出辐射实际上全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。黑体是理想的吸收体,辐射,极小部
4、分通过小孔逸出。黑体是理想的吸收体,也是理想的发射体。也是理想的发射体。第一节第一节.微观粒子的运动特征微观粒子的运动特征 一个吸收全部入射线的表面称为黑体表面。一个吸收全部入射线的表面称为黑体表面。一个带小孔的空腔可视为黑体表面。它几乎完全一个带小孔的空腔可视为黑体表面。它几乎完全吸收入射幅射。通过小孔进去的光线碰到内表面吸收入射幅射。通过小孔进去的光线碰到内表面时部分吸收,部分漫反射,反射光线再次被部分时部分吸收,部分漫反射,反射光线再次被部分吸收和部分漫反射吸收和部分漫反射,只有很小部分入射光有,只有很小部分入射光有机会再从小孔中出来。机会再从小孔中出来。如图如图11所示所示 图图12表
5、表示在四种不同示在四种不同的温度下,黑的温度下,黑体单位面积单体单位面积单位波长间隔上位波长间隔上发射的功率曲发射的功率曲线。十九世纪线。十九世纪末,科学家们末,科学家们对黑体辐射实对黑体辐射实验进行了仔细验进行了仔细测量,发现辐测量,发现辐射强度对腔壁射强度对腔壁温度温度 T的依赖的依赖关系。关系。为了解释黑体辐射现象,他提出粒子能量永远是为了解释黑体辐射现象,他提出粒子能量永远是 h h 的整数的整数倍,倍,=n h=n h ,其中,其中 是辐射频率,是辐射频率,h h 为新的物理常数,后为新的物理常数,后人称为人称为普朗克常数普朗克常数(h=6.626h=6.6261010-34 -34
6、 J Js s),这一创造性,这一创造性的工作使他成为量子理论的奠基者,在物理学发展史上具有的工作使他成为量子理论的奠基者,在物理学发展史上具有划时代的意义。他第一次提出辐射能量的不连续性,著名科划时代的意义。他第一次提出辐射能量的不连续性,著名科学家爱因斯坦接受并补充了这一理论,以此发展自己的相对学家爱因斯坦接受并补充了这一理论,以此发展自己的相对论,波尔也曾用这一理论解释原子结构。量子假说使普朗克论,波尔也曾用这一理论解释原子结构。量子假说使普朗克获得获得1918年诺贝尔物理奖。年诺贝尔物理奖。黑体黑体是理想的吸收体,也是理想的发射体。当把几种是理想的吸收体,也是理想的发射体。当把几种物体
7、加热到同一温度,黑体放出的能量最多。由图中不同物体加热到同一温度,黑体放出的能量最多。由图中不同温度的曲线可见,随温度增加,温度的曲线可见,随温度增加,E E增大,且其极大值向增大,且其极大值向高频移动。为了对以上现象进行合理解释,高频移动。为了对以上现象进行合理解释,19001900年年PlankPlank提出了黑体辐射的能量量子化公式提出了黑体辐射的能量量子化公式:PlankThe Nobel Prize in Physics 1918 for their theories,developed independently,concerning the course of chemical
8、reactions Max Karl Ernst Ludwig Planck Germany Berlin University Berlin,Germany 1858-1947 普朗克普朗克 根据光波的经典图像,波的能量与它的强度成正比,而与频率无关,因此只要有足够的强度,任何频率的光都能产生光电效应,而电子的能动将随光强的增加而增加,与光的频率无关,这些经典物理学的推测与实验事实不符。光电效应是光照在金属表面上,金属发射出电子的现象。1.只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子,不同金属的临阈频率不同。2 2.随着光强的增加,发射的电子数也增加,但不影响光电子
9、的动能。3 3.增加光的频率,光电子的动能也随之增加。1.1.2图图1-3 1-3 光电效应示意图光电效应示意图(光源打开后光源打开后,电流表电流表指针偏转指针偏转)(2).光子不但有能量,还有质量(m),但光子的静止质量为零。按相对论的质能联系定律,=mc2,光子的质量为 m=hc2所以不同频率的光子有不同的质量。h 1905年,Einstein提出光子学说,圆满地解释了光电效应。光子学说的内容如下:(1).光是一束光子流,每一种频率的光的能量都有一个最小单位,称为光子,光子的能量与光子的频率成正比,即式中h为Planck常数,为光子的频率。将频率为 的光照射到金属上,当金属中的一个电子受到
10、一个光子撞击时,产生光电效应,光子消失,并把它的能量h h 转移给电子。电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子的动能。(3).光子具有一定的动量(p)P=mc=hP=mc=h /c=h/c=h光子有动量在光压实验中得到了证实。(4).光的强度取决于单位体积内光子的数目,即光子密度。E Ek k =h=h W 当h W时,从金属中发射的电子具有一定的动能,它随 的增加而增加,与光强无关。式中W是电子逸出金属所需要的最低能量,称为脱出功,它等于h0;Ek是光电子的动能,它等于 mv22,上式能解释全部实验观测结果:当h n n1 1,n n1 1、n n2 2为正整
11、数为正整数该公式可推广到氢原子光谱该公式可推广到氢原子光谱的其它谱系的其它谱系 hEEE21(3 3)各态能量一定,角动量也一定)各态能量一定,角动量也一定(M=nhM=nh/2/2)并且是并且是量子化量子化的,大小为的,大小为 h/2h/2 的整数倍。的整数倍。(1 1)原子中有一些)原子中有一些确定能量确定能量的稳定态,原子处于定态的稳定态,原子处于定态 不辐射能量。不辐射能量。(2 2)原子从)原子从一定态一定态过渡到过渡到另一定态另一定态,才发射或吸收能量。,才发射或吸收能量。为了解释以上结果,玻尔综合了普朗克的量子论,为了解释以上结果,玻尔综合了普朗克的量子论,爱因斯坦的光子说以及卢
12、瑟福的原子有核模型,提出著爱因斯坦的光子说以及卢瑟福的原子有核模型,提出著名的玻尔理论:名的玻尔理论:+e-errmvre22024库仑引力库仑引力 离心力离心力 角动量角动量mvrnhM23,2,1)(9.5222220npmnnmehrRnnhmeremvE222204022118)4(21总能量总能量动能动能势能势能)11(222112nnREEhnn)11(2221nnhcRc Bohr模型对于单电子原子在多方面应用得很有模型对于单电子原子在多方面应用得很有成效,对碱金属原子也近似适用成效,对碱金属原子也近似适用.但它竟不能解释但它竟不能解释 He 原子的光谱,更不必说较复杂的原子;也
13、不能原子的光谱,更不必说较复杂的原子;也不能计算谱线强度。后来,计算谱线强度。后来,Bohr模型又被模型又被.Sommerfeld等人进一步改进,增加了椭圆轨道和轨道平面取向等人进一步改进,增加了椭圆轨道和轨道平面取向量子化量子化(即空间量子化即空间量子化).这些改进并没有从根本上这些改进并没有从根本上解决问题解决问题,促使更多物理学家认识到促使更多物理学家认识到,必须对物理学必须对物理学进行一场深刻变革进行一场深刻变革.法国物理学家德布罗意法国物理学家德布罗意(L.V.de Broglie)勇敢地迈出一大步勇敢地迈出一大步.1924年年,他提出了物质他提出了物质波可能存在的主要论点波可能存在
14、的主要论点.BohrBohr玻尔玻尔他获得了他获得了1922年的年的诺贝尔物诺贝尔物理学奖。理学奖。Bohr(older)Bohr(older)玻尔玻尔 EinsteinEinstein为了解释光电效应提出了光子说,为了解释光电效应提出了光子说,即光子是具有波粒二象性的微粒,这一观点在科即光子是具有波粒二象性的微粒,这一观点在科学界引起很大震动。学界引起很大震动。19241924年,年轻的法国物理学年,年轻的法国物理学家家德布罗意(德布罗意(de Brogliede Broglie)从这种思想出发从这种思想出发,提出了实物微粒也有波性,他认为:“在光学上,比起波动的研究方法,是过于忽略了粒子的
15、研究方法;在实物微粒上,是否发生了相反的错误?是不是把粒子的图像想得太多,而过于忽略了波的图像?”-德布罗意物质波 1.1.3他提出实物微粒也有波性,即德布罗意波。E=h v,p=h/E=h v,p=h/1927年,戴维逊(Davisson)与革末(Germer)利用单晶体电子衍射实验,汤姆逊(Thomson)利用多晶体电子衍射实验证实了德布罗意的假设。光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性。戴维逊(Davisson)等估算了电子的运动速度,等估算了电子的运动速度,若将电子加压到若将电子加压到10
16、00V,电子波长应为几十个电子波长应为几十个pm,这样波长一般光栅无法检验出它的波动性。他这样波长一般光栅无法检验出它的波动性。他们联想到这一尺寸恰是晶体中原子间距,所以们联想到这一尺寸恰是晶体中原子间距,所以选择了金属的单晶为衍射光栅。选择了金属的单晶为衍射光栅。将电子束加速到一定速度将电子束加速到一定速度去撞击金属去撞击金属NiNi的单晶,观察到的单晶,观察到完全类似射线的衍射图象,完全类似射线的衍射图象,证实了电子确实具有波动性。证实了电子确实具有波动性。图图1-51-5为电子射线通过为电子射线通过 CsI薄膜薄膜时的衍射图象,一系列的同心时的衍射图象,一系列的同心圆称为衍射环纹。该实验
17、首次圆称为衍射环纹。该实验首次证实了德布罗意物质波的存在。证实了德布罗意物质波的存在。后来采用中子、质子、氢原子后来采用中子、质子、氢原子等各种粒子流,都观察到了衍等各种粒子流,都观察到了衍射现象。证明了不仅光子具有射现象。证明了不仅光子具有波粒二象性,微观世界里的所波粒二象性,微观世界里的所有微粒都有具有波粒二象性,有微粒都有具有波粒二象性,波粒二象性是微观粒子的一种波粒二象性是微观粒子的一种基本属性。基本属性。微观粒子因为没有明确的外形和确定的轨道,微观粒子因为没有明确的外形和确定的轨道,我们得不到一个粒子一个粒子的衍射图象,我们只我们得不到一个粒子一个粒子的衍射图象,我们只能用大量的微粒
18、流做衍射实验。实验开始时,只能能用大量的微粒流做衍射实验。实验开始时,只能观察到照象底片上一个个点,未形成衍射图象,待观察到照象底片上一个个点,未形成衍射图象,待到足够长时间,通过粒子数目足够多时,照片才能到足够长时间,通过粒子数目足够多时,照片才能显出衍射图象,显示出波动性来。可见微观粒子的显出衍射图象,显示出波动性来。可见微观粒子的波动性是一种统计行为。微粒的物质波与宏观的机波动性是一种统计行为。微粒的物质波与宏观的机械波(水波,声波)不同,机械波是介质质点的振械波(水波,声波)不同,机械波是介质质点的振动产生的;与电磁波也不同,电磁波是电场与磁场动产生的;与电磁波也不同,电磁波是电场与磁
19、场的振动在空间的传播。微粒物质波,能反映微粒出的振动在空间的传播。微粒物质波,能反映微粒出现几率,故也称为几率波。现几率,故也称为几率波。德布罗意德布罗意(Louis Victor de Broglie,1892-1987)法国)法国物理学家。德布罗意物理学家。德布罗意提出的物质波假设。提出的物质波假设。为人类研究微观领域为人类研究微观领域内物体运动的基本规内物体运动的基本规律指明了方向。为了律指明了方向。为了表彰德布罗意,他被表彰德布罗意,他被授予授予1929年诺贝尔年诺贝尔物理学奖。物理学奖。hpx1.1.4 不确定度关系不确定度关系-测不准原理测不准原理在同一瞬时,由于衍射的缘故,电子动
20、量的大小虽在同一瞬时,由于衍射的缘故,电子动量的大小虽未变化,但动量的方向有了改变。由图可以看到,未变化,但动量的方向有了改变。由图可以看到,如果只考虑一级如果只考虑一级(即即 )衍射图样,则电子绝大多衍射图样,则电子绝大多数落在一级衍射角范围内,电子动量沿数落在一级衍射角范围内,电子动量沿 轴方向轴方向分量的不确定范围为分量的不确定范围为1kOxsinppx由德布罗意公式和单缝衍射公式由德布罗意公式和单缝衍射公式ph 和和 bsin上式可写为上式可写为bhpx又因为又因为hpx 宏观世界与微观世界的力学量之间有很大区别,宏观世界与微观世界的力学量之间有很大区别,前者在取值上没有限制,变化是连
21、续的,而微观世前者在取值上没有限制,变化是连续的,而微观世界的力学量变化是量子化的,变化是不连续的,在界的力学量变化是量子化的,变化是不连续的,在不同状态去测定微观粒子,可能得到不同的结果,不同状态去测定微观粒子,可能得到不同的结果,对于能得到确定值的状态称为对于能得到确定值的状态称为“本征态本征态”,而有些,而有些状态只能测到一些不同的值(称为平均值),称为状态只能测到一些不同的值(称为平均值),称为“非本征态非本征态”。例如,当电子处在坐标的本征态时,。例如,当电子处在坐标的本征态时,测定坐标有确定值,而测定其它一些物理量如动量,测定坐标有确定值,而测定其它一些物理量如动量,就得不到确定值
22、,相反若电子处在动量的本征态时,就得不到确定值,相反若电子处在动量的本征态时,动量可以测到准确值,坐标就测不到确定值,而是动量可以测到准确值,坐标就测不到确定值,而是平均值。海森伯平均值。海森伯(Heisenberg)称两个物理量的这种称两个物理量的这种关系为关系为“测不准测不准”关系。关系。海森伯海森伯(W.K.Heisenberg,1901-1976)1901-1976)德国理论物理学家,德国理论物理学家,他于他于19251925年为量子力学的创立作年为量子力学的创立作出了最早的贡献,而于出了最早的贡献,而于2626岁时提岁时提出的不确定关系则与物质波的概出的不确定关系则与物质波的概率解释
23、一起,奠定了量子力学的率解释一起,奠定了量子力学的基础,为此,他于基础,为此,他于19321932年获诺贝年获诺贝尔物理学奖。尔物理学奖。海森伯所以,子弹位置的不确定范围是微不足道的。可见子所以,子弹位置的不确定范围是微不足道的。可见子弹的动量和位置都能精确地确定,不确定关系对宏观弹的动量和位置都能精确地确定,不确定关系对宏观物体来说没有实际意义。物体来说没有实际意义。11smkg0.2smkg20001.0 mvp1414smkg100.2smkg2100.1%01.0ppm103.3m1021063.630434phx例例1.1.一颗质量为一颗质量为1010g g 的子弹,具有的子弹,具有
24、200200m ms s-1-1的速率,若的速率,若其动量的不确定范围为动量的其动量的不确定范围为动量的0.01%(0.01%(这在宏观范围已这在宏观范围已十分精确十分精确),则该子弹位置的不确定量范围为多大,则该子弹位置的不确定量范围为多大?解解:子弹的动量子弹的动量动量的不确定范围动量的不确定范围由不确定关系式,得子弹位置的不确定范围由不确定关系式,得子弹位置的不确定范围我们知道原子大小的数量级为我们知道原子大小的数量级为10-10m,电子则更小。,电子则更小。在这种情况下,电子位置的不确定范围比原子的大小在这种情况下,电子位置的不确定范围比原子的大小还要大几亿倍,可见企图精确地确定电子的
25、位置和动还要大几亿倍,可见企图精确地确定电子的位置和动量已没有实际意义。量已没有实际意义。1sm128131smkg108.1smkg200101.9 mvp1321284smkg0.18.1 smkg0.18.1100.1%01.0ppm107.3m108.11063.623234phx例例2 2.一电子具有一电子具有200 200 的速率,动量的不确定范的速率,动量的不确定范围为动量的围为动量的0.01%(0.01%(这已经足够精确了这已经足够精确了),则该电子的,则该电子的位置不确定范围有多大位置不确定范围有多大?解解:电子的动量为电子的动量为动量的不确定范围动量的不确定范围由不确定关系
展开阅读全文