运筹学-运输问题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《运筹学-运输问题课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 运输 问题 课件
- 资源描述:
-
1、一、运输问题及其数学模型一、运输问题及其数学模型二、表上作业法求解运输问题二、表上作业法求解运输问题三、产销不平衡的运输问题及应用三、产销不平衡的运输问题及应用3问题的提出问题的提出 运输问题:产地、销地、产量、销量运输问题:产地、销地、产量、销量 例例1 有有A1,A2,A3三座铁矿,每天要把生产三座铁矿,每天要把生产的铁矿石运往的铁矿石运往B1,B2,B3,B4四个炼铁厂。各矿的四个炼铁厂。各矿的产量、各厂的销量以及各厂矿间的运价如下表所示。产量、各厂的销量以及各厂矿间的运价如下表所示。问应如何组织调运才能使运费最少?问应如何组织调运才能使运费最少?运输问题及其数学模型运输问题及其数学模型
2、4B1 B2 B3 B4产量产量A1A2A36 3 2 57 5 8 43 2 9 7523销量销量2 3 1 4(百元百元/百吨百吨)xij Ai运给运给Bj的铁矿石数量(百吨)的铁矿石数量(百吨)z 总运费(百元)总运费(百元)运输问题及其数学模型运输问题及其数学模型5B1B2B3B4产量产量A163255A275842A332973销量销量2314(百元百元/百吨百吨)x11x12x13x14x21x22x23x24x31x32x33x34运输问题及其数学模型运输问题及其数学模型6 数学模型为数学模型为:min z=6x11+3x12+2x13+5x14+7x21+5x22+8x23+4
3、x24 +3x31+2x32+9x33+7x34 x11+x12+x13+x14 =5 x21+x22+x23+x24 =2 x31+x32+x33+x34=3 x11 +x21 +x31 =2 x12 +x22 +x32 =3 x13 +x23 +x33 =1 x14 +x24 +x34=4 xij0 (i=1,2,3;j=1,2,3,4)s.t.运输问题及其数学模型运输问题及其数学模型7 运输模型的特点:运输模型的特点:(1)它有它有mn个变量,个变量,m+n个约束方程个约束方程 (2)其系数阵具有特殊的结构其系数阵具有特殊的结构 m=3行行n=4行行A=1 1 1 1 1 1 1 1 1
4、 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8表式表式模型模型 产销平衡产销平衡的运输问题的运输问题:aai i=bbj j 产大于销产大于销的运输问题的运输问题:aai ibbj j 产小于销产小于销的运输问题的运输问题:aai ibbj jB1B2Bn 产量产量 A1c11 x11c12 x12c1n x1n a1A2c21 x21c22 x22c2n x2na2Amcm1 xm1 cm2 xm2 cmn xmnam销量销量b1b2bn aib bj运输问题及其数学模型运输问题及其数学模型运输问题及其数学模型运输问题及其数学模型1 1、运输问题的网络图、线性规划模型及运输
5、表、运输问题的网络图、线性规划模型及运输表设有同一种货物从设有同一种货物从m m个供应地个供应地1 1,2 2,m m运往运往n n个需个需求地求地1 1,2 2,n n。第。第i i个供应地的供应量(个供应地的供应量(SupplySupply)为为 ,第,第j j个需求地的需求量(个需求地的需求量(DemandDemand)为为 。每单位货物从供应地。每单位货物从供应地i i运到需求地运到需求地j j的的运价为运价为 。求一个使总运费最小的运输方案。如果。求一个使总运费最小的运输方案。如果从任一供应地到任一需求地都有道路通行,这样的从任一供应地到任一需求地都有道路通行,这样的运输问题称为完全
6、的运输问题;如果总供应量等于运输问题称为完全的运输问题;如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问总需求量,这样的运输问题称为供求平衡的运输问题。我们先考虑完全的、供求平衡的运输问题。题。我们先考虑完全的、供求平衡的运输问题。)0(iiss)0(jjddijc运输问题及其数学模型运输问题及其数学模型1inj1m1sisndjd1dnc1jc111c1 icijcinc1mcmjcmncms 右图是运输问题的网络表示形式。运输问题及其数学模型运输问题及其数学模型运输问题也可以用线性规划表示。设 为从供应地i运往需求地j的运量,则总运费最小的线性规划问题如下式所示。ijxnjmi
7、xdxxxdxxxdxxxsxxxsxxxsxxxstxcxcxcxcxcxcxcxcxczijnmnnnnnmmnnnnnmnmnmmmmnnnn 1,1,0min2122221211211121222221111211221122222221211112121111运输问题及其数学模型运输问题及其数学模型运输问题线性规划变量个数为nm个,每个变量与运输网络的一条边对应,所有的变量都是非负的。约束个数为m+n个,全部为等式约束。前m个约束是供应地的供应量约束,后n个约束是需求地的需求量约束。运输问题约束的特点是约束左边所有的系数都是0或1,而且每一列中恰有两个系数是1,其他都是0。运输问题及
8、其数学模型运输问题及其数学模型在运输问题线性规划模型中,令),.,(212222111211mnmmnnxxxxxxxxxX ),.,(212222111211mnmmnncccccccccC 列列列列列行nnnnnm111111111111111111A=),(2121nmdddsssb 则运输问题的线性规划可以写成:运输问题及其数学模型运输问题及其数学模型完全的运输问题系数矩阵A中,列向量 中只有两个元素是1,其他元素都是0。第一个1位于矩阵的第i行,第二个1位于矩阵的第m+j行。这个列向量可以表示为两个单位向量之和,即ijpjmiijeejmip010000100110行第行第运输问题及
9、其数学模型运输问题及其数学模型 运输问题除了用网络表示及线性规划表示外,还可以用运输表表示,见右表。运输表是一个m行n列的表格,每一行对应于一个供应地,每一列对应于一个需求地。运输表共有mn个格子,每个格子对应于从一个供应地出发到一个需求地的运输路线。12n12 m1s2snd2d1dms11c12cnc121c22cnc21mc2mcmnc11x12xnx121x22xnx21mx2mxmnx运输问题及其数学模型运输问题及其数学模型 上页表中,每一格的左上角小方格内的数字表明从相应的供应地i到需求地j的运价 ,每一格右下角表明从相应的供应地i到需求地j的运量 。表右方表明各供应地的供应量 ,
10、表下方表明各需求地的需求量 。每一行运量之和表示从该供应地运往各需求地的运量之和,它应该等于该供应地的供应量;同样,每一列运量之和表示从各供应地运往该需求地的运量之和,它应该等于该需求地的需求量。ijcijxjdis运输问题及其数学模型运输问题及其数学模型运输问题约束矩阵的性质运输问题约束矩阵的性质列列列列行行nnnnnm111111111111111111A=分别将A的前m行和后n行相加,得到两个相同的mn维向量,其中的元素都是1。即A矩阵的m+n个行向量是线性相关的,因此A矩阵的秩m+n。运输问题分别从供应地1、2、m到需求地n的m条边以及从供应地1分别到需求地1、2、n-1的n-1条边,
11、一共有m+n-1条边。这m+n-1条边组成运输问题约束矩阵A中的m+n-1个列向量,这些列向量在A矩阵中的子矩阵是一个m+n行,m+n-1列的矩阵 列列行行1nmnm001111111111)1n,1()1,1()n,m()n,2()n,1(B=删除矩阵B的最后一行,得到 1n1m211n1m211111111B=可以看出,这是一个上三角矩阵,显然,秩Bm+n-1。由m+n-1=秩B秩A0。由于单纯形叠代在每一步都满足互补松弛条件,因此对于基变量xij0,相应的对偶约束条件ui+vj cij的松弛变量一定等于0,即 ui+vj=cij 由于基变量一共有m+n-1个,因此对偶问题一共有m+n-1
12、个等式约束,只要先确定一个对偶变量的值,就可以由m+n-1个等式约束确定其余m+n-1个对偶变量的值。不妨设vn=0,逐个递推求得ui和vj。求出ui、vj的值以后,就可以进一步计算各非基变量的检验数zij-cij=ui+vj-cij。3.解的改进(1)确定进基变量 由单纯形法原理可以知道,凡检验数zij-cij0的非基变量都可以进基。通常总是选取检验数中最小的对应变量进基。(2)确定离基变量 为保证改进后的解仍为基本可行解,需要保证所有变量的非负性。因此,改进的方法就是从检验数为负数的空格出发,作一条除该空格外其余顶点均为有数字格组成的闭合回路。在这条闭回路上,按对运量作最大可能的调整。表上
13、作业法求解运输问题表上作业法求解运输问题表上作业法求解运输问题表上作业法求解运输问题12341101191530151142131216945453118710501931414131213252515203184例 改进表中用最小元素法得到的初始基本可行解。由表可知,x34的检验数是-2,因此可以作为进基变量。选取变量x34作为进基变量,以其所在的空格为出发点作闭合回路。选取变量x34作为进基变量相应的闭合回路 表上作业法求解运输问题表上作业法求解运输问题12341101191530151521312169454531187105053114414131213252515203184将其改进
展开阅读全文