贪心算法与最优策略讲义课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《贪心算法与最优策略讲义课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 贪心 算法 最优 策略 讲义 课件
- 资源描述:
-
1、14 贪心算法与最优策略 2学习要点学习要点贪心算法的概念。贪心算法的概念。贪心算法的基本要素贪心算法的基本要素(1)最优子结构性质)最优子结构性质(2)贪心选择性质)贪心选择性质贪心算法与动态规划算法的差异贪心算法与动态规划算法的差异应用范例应用范例(1)活动安排问题;)活动安排问题;(2)最优装载问题;)最优装载问题;(3)哈夫曼编码和数据压缩;)哈夫曼编码和数据压缩;(4)单源最短路径;)单源最短路径;(5)最小生成树;)最小生成树;(6)多机调度问题。)多机调度问题。3 贪心算法贪心算法总是作出在当前看来最好的选择。总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所
2、作出也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的的选择只是在某种意义上的局部最优局部最优选择选择。当然,希望贪心算法得到的最终结希望贪心算法得到的最终结果也是整体最优的。果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解,如单源最短路经问题、最小生成树问题等。在一些情况下,在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却即使贪心算法不能得到整体最优解,其最终结果却是最优解的近似解。是最优解的近似解。4贪心策略的思想例例1 1 付款问题付款问题 超市超市POSPOS给顾客找零,如给顾客找零,如26.826.8。“贪心贪心
3、”原则:尽量给顾客大面值的钱。原则:尽量给顾客大面值的钱。20 20、5 5、1 1、0.50.5、0.20.2、0.10.1问题描述:问题描述:已知:已知:int m=500,200,100,50,20,10,5,2,1;int m=500,200,100,50,20,10,5,2,1;int v;int v;输出:各种钞票数输出:各种钞票数 int n10;int n10;使得使得 10 10 10 10 ni ni*mi=v mi=v 且且 ni ni最小。最小。i=1 i=1 i=1 i=15void pay(int m,int v)void pay(int m,int v)int i
4、,r,n10;int i,r,n10;for(i=0;i10;i+)ni=0;for(i=0;i0)while(r0)if(mi)=r)if(mi)=r)r-=mi;ni+;r-=mi;ni+;else else i+;i+;for(i=0;i10;i+)for(i=0;i10;i+)输出输出nini个个mimi面值的钞票。面值的钞票。6 本节讨论可以用贪心算法求解的问题的一般特征。本节讨论可以用贪心算法求解的问题的一般特征。对于一个具体的问题,怎么知道是否可用贪心算法对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢解此问题,以及能否得到问题的最优解呢?这个问题
5、很这个问题很难给予肯定的回答。难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有类问题一般具有2 2个重要的性质:个重要的性质:贪心选择性质贪心选择性质 和和 最优子结构性质。最优子结构性质。7 贪心选择性质贪心选择性质 所谓贪心选择性质是指所求问题的整指所求问题的整体最优解可以通过一系列局部最优的选择体最优解可以通过一系列局部最优的选择(即贪心选择)来得到。(即贪心选择)来得到。这是贪心算法与这是贪心算法与动态算法的主要区别动态算法的主要区别。对于一个具体问题,要确定它是否具有贪心选择性质,我们必须证明每一步所作的贪心选择
6、最终导致问题的一个整体最优解。8最优子结构性质最优子结构性质 当一个问题的最优解包含着它的子问题的最优解时,称此问题具有最优子结构性质。换句话说,问题的整体最优性依赖于其局部子问题解的最优性。9 共同点:贪心算法和动态规划算法都要求问题具有最优子结构性质。不同点:动态规划算法通常以自底向上自底向上的方式解各子问题,而贪心算法则通常以自自顶向下顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。问题1:对于具有最优子结构最优子结构的问题应该选用贪心算法还是动态规划算法求解?问题2:是否能用动态规划算法求解的问题也能用贪心算法求解?贪心算法与动态规
7、划算法的差异贪心算法与动态规划算法的差异10例例2 2n0-10-1背包问题:背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?n背包问题:背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品可以选择物品i i的一部分的一部分,而不一定要全部装入背包,1in。11用贪心算法解背包问题的基本步骤:首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择
8、单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。12nvoid Knapsack(int n,float M,float v,float w,float x)n Sort(n,v,w);/各物品依单位重量的价值排序各物品依单位重量的价值排序n int i;float c=M;n for(i=1;i=n;i+)xi=0;n for(i=1;ic)break;n xi=1;n c-=wi;n n if(i=n)xi=c/wi;n 算法算法knapsackknapsack的的主要计算时间在于将主要计算时间在于将各种物品依其单位重各种物品依其单位重量的价值从大到小
9、排量的价值从大到小排序。因此,算法的计序。因此,算法的计算时间上界为:算时间上界为:O O(nlognnlogn)。)。为了证明算法的正确为了证明算法的正确性,还必须证明背包性,还必须证明背包问题具有贪心选择性问题具有贪心选择性质质。13 对于0-10-1背包问题背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。事实上,在考虑0-1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再作出最好选择。由此就导出许多互相重叠的子问题。这正是该问题可用动态规动态规划算法划算法求解的另一重要特征。实际上也是
10、如此,动态规划算法的确可以有效地解0-1背包问题。14例3:活动安排问题 活动安排问题就是要在所给的活动集合中选出最大的活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合。该问题要求高效地安排一系列争用某一相容活动子集合。该问题要求高效地安排一系列争用某一公共资源的活动。公共资源的活动。设有设有n n个活动的集合个活动的集合E=1,2,nE=1,2,n,其中每个活动都,其中每个活动都要求使用同一资源要求使用同一资源(如演讲会场如演讲会场),而在同一时间内只有一,而在同一时间内只有一个活动能使用这一资源。个活动能使用这一资源。每个活动每个活动i i都有一个要求使用该资源的起始时间都有一
11、个要求使用该资源的起始时间sisi和和一个结束时间一个结束时间fi,fi,且且si fisi fi 。如果选择了活动。如果选择了活动i i,则它在,则它在半开时间区间半开时间区间si,fi)si,fi)内占用资源。若区间内占用资源。若区间si,fi)si,fi)与区与区间间sj,fj)sj,fj)不相交,则称活动不相交,则称活动i i与活动与活动j j是相容的。也就是是相容的。也就是说,当说,当sifjsifj或或sjfisjfi时,活动时,活动i i与活动与活动j j相容。相容。15例3 活动安排问题 例:例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:i123456
12、78910 11Si 130535688212fi45678910 11 12 13 1416i123 4567891011Si 130 535688212fi456 7891011121314例3 活动安排问题 算法算法greedySelector greedySelector 的计算的计算过程过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。17例3 活动安排问题ntemplatenvoid GreedySelector(int n,Type s,Type f,bool A)n A1=true;n int
13、j=1;n for(int i=2;i=fj)Ai=true;j=i;n else Ai=false;n n各活动的起始时间和各活动的起始时间和结束时间存储于数组结束时间存储于数组s s和和f f中且按结束时间中且按结束时间的非减序排列的非减序排列 18例3 活动安排问题 由于输入的活动以其完成时间的非减序非减序排列,所以算法greedySelectorgreedySelector每次总是选择具有最早完成时具有最早完成时间间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时使剩余的可安排时间段极大化间段极大化
14、,以便安排尽可能多的相容活动。算法greedySelectorgreedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)O(nlogn)的时间重排。19例3 活动安排问题 若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。贪心算法并不总能求得问题的整体最优解整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最
15、大。这个结论可以用数学归纳法证明。20例4 最优装载 有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。1 1、算法描述、算法描述最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。具体算法描述如下页。21templatevoid Loading(int x,Type w,Type c,int n)int*t=new int n+1;Sort(w,t,n);for(int i=1;i=n;i+)xi=0;for(int i=1;i=n&wti=c;i+)xti=1
16、;c-=wti;222 2、贪心选择性质、贪心选择性质 可以证明最优装载问题具有贪心选择性质。3 3、最优子结构性质、最优子结构性质最优装载问题具有最优子结构性质。由最优装载问题的贪心选择性质和最优子结构性质,容易证明算法loadingloading的正确性。算法loadingloading的主要计算量在于将集装箱依其重量从小到大排序,故算法所需的计算时间为 O(nlogn)O(nlogn)。23例5 哈夫曼编码哈夫曼编码哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。
17、给出现频率高的字符较短的编码,出现频率较低的字符以较长的编码,可以大大缩短总码长。1、前缀码对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其它字符代码的前缀。这种编码称为前缀码前缀码。24 编码的前缀性质可以使译码方法非常简单。表示最优前缀码最优前缀码的二叉树总是一棵严格二严格二叉树叉树,即树中任一结点都有2个儿子结点。平均码长平均码长定义为:使平均码长达到最小的前缀码编码方案称为给定编码字符集C的最优前缀码最优前缀码。)()()(cdcfTBTCc 252 2、构造哈夫曼编码、构造哈夫曼编码哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码哈夫曼编码。哈
18、夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。算法以|C|个叶结点开始,执行|C|1次的“合并”运算后产生最终所要求的树T。263 3、哈夫曼算法的正确性、哈夫曼算法的正确性要证明哈夫曼算法的正确性,只要证明最优前缀码问题具有贪心选择性质贪心选择性质和最优最优子结构性质子结构性质。(1)贪心选择性质(2)最优子结构性质27例6 单源最短路径给定带权有向图G=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源源。现在要计算从源到所有其它各顶点的最短路长度最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题单源最短路径问题。1、算法基本思想Di
展开阅读全文