书签 分享 收藏 举报 版权申诉 / 128
上传文档赚钱

类型微积分教学-chapter14课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4528784
  • 上传时间:2022-12-17
  • 格式:PPT
  • 页数:128
  • 大小:2.24MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《微积分教学-chapter14课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    微积分 教学 chapter14 课件
    资源描述:

    1、Chapter 14 Partial Derivatives 14.1 Functions of Several Variables 14.2 Limits and Continuity 14.3 Partial Derivatives 14.4 Tangent Planes and Linear Approximations 14.5 The Chain Rule 14.6 Directional Derivatives and the Gradient Vector 14.7 Maximum and Minimum Values 14.8 Lagrange MultipliersSo fa

    2、r we have dealt with the calculus of functions of a single variable.But,in the real world,physical quantities often dependon two or more variables,so in this chapter we turn our attention to functions of several variables and extend the basic ideas of differential calculus to such functions.14.1 Fun

    3、ctions of Several VariablesIn this section we study functions of two or more variables from four points of view:nVerbally (by a description in words)nNumerically (by a table of values)nAlgebraically (by an explicit formula)nVisually (by a graph or level curves)Functions of Two VariablesDefinition A

    4、function of two variables is a rule that assigns to each ordered pair of real numbers(x,y)in a set D a unique real number denoted by f(x,y).The set D is the domain of f and its range is the set of values that f takes on,that is,f(x,y)|(x,y)D.We often write z=f(x,y)to make explicit the value taken on

    5、 by f at the general point(x,y).The variables x and y are independent variablesand z is the dependent variable.(x,y)f(x,y)xyzfExample 1 Find the domains of the following functions and evaluate f(3,2).(a)(b)Solution(a)(b)11),(xyxyxf)ln(),(2xyxyxf1,01,2613123)2,3(xyxyxDf22,0)32ln(3)2,3(yxyxDf2201yxxxy

    6、22ln()1xzyxxy220010yxxxyExample Find the domain ofSolution 22()(,)10D fx y xyandyxandxthe domain is:yyyyyxooooo ooyx221xy000oO o0ooExample32(,)23f u vuuvv12,uvthenxyLet 321 21122(,)()2()()3()fx yxxyy321412xxyy3212(,),(,)23.Find fwhere f x yxxyyxy32(,)23f x yxxyySolutionGraphs Another way of visualiz

    7、ing the behavior of a function of two variables is to consider its graph.Definition If f is a function of two variables with domain D,then the graph of f is the set of all points(x,y,z)in suchthat z=f(x,y)and(x,y)is in D.3RxyzD(,(,)x y f x y(,0)x yS 22zxy22zRxyLevel curvesDefinition The level curves

    8、 of a function of two variables are the curves with equations f(x,y)=kwhere k is a constant(in the range of f).Sketch some level curves of the functionExample22(,)4f x yxyFunctions of Three or More Variables A function of three variables,f,is a rule that assigns to each ordered triple(x,y,z)in a dom

    9、ain D a unique real number denoted by f(x,y,z).A function of n variables,f,is a rule that assigns a number to an n-tuple of real number.We denoted by the set of all such n-tuples.3RnR12(,)nx xx12(,)nzf x xx14.2 Limits and ContinuityDefinition Let f be a function of two variables whosedomain D includ

    10、es points arbitrarily close to(a,b).Then we say that the limit of f(x,y)as(x,y)approaches(a,b)is L and we write if for every number there is a corresponding number such that whenever and(,)(,)lim(,)x yabf x yL00(,)f x yL(,)x yD220()()xaybExample Find if it exists.222(,)(0,0)3limx yx yxySolutionLet 0

    11、Since 222223033x yyxyxyIf we choose 3,then22230 x yxywhenever220 xyHence 222(,)(0,0)3lim0 x yx yxyIf as along a path and as along a path ,where ,then does not exist.Example does not exist.Solution as along the x-axis as along the y-axis(,)(,)lim(,)x ya bf x y1(,)f x yL(,)(,)x ya b1C2(,)f x yL(,)(,)x

    12、 ya b2C12LL2222(,)(0,0)limx yxyxy(,)1f x y(,)(0,0)x y(,)1f x y (,)(0,0)x y Thus the given limit does not exist.Example does not exist?22(,)(0,0)limx yxyxySolution2222(,)(0,0)(,)(0,0)1limlim2x y xx y xxyx xxyxx2222(,2)(0,0)(,)(0,0)22limlim54x yxx y xxyxxxyxxThus the given limit does not exist.Since E

    13、xample Find.11lim00yxyxyx)11(1)1(lim200yxxyyxyx21111lim00yxyx.11lim00yxyxyxSolutionExample Find1Solution01xysinxylim.x01xysinxylimx01xysinxylimyxy22222001()()xycos xylimxyExample FindSolution222rxy,Let2404 1r(cos r)limr2304224rsin rrlimrSoContinuityDefinition A function f of two variables is called

    14、continuous at(a,b)if We say f is continuous on D if f is continuous at Every point(a,b)in D.Example (,)(,)lim(,)(,)x ya bf x yf a b23322 33 2(,)(1,2)lim(32)12123 1 2 2 11x yx yx yxy Example where is the following function continuous.2223(,)0(,)0(,)0 x yifx yf x yxyifx ySolutionThe function f is cont

    15、inuous for(,)0 x y since it is equal to a rational function there.The function f is continuous at(0,0)because 222(,)(0,0)3lim0 x yx yxySo the function is continuous in 2.RExample where is the following function discontinuous.11),(22yxyxf22(,)1Dx y xySolutionsince f a rational function,it is continuo

    16、us on itsdomain,which is the set So the function is discontinuous on the circle.221xy00(,)()(,)zf x yg xf x yyy00(,)()(,)zf x yh yf xyxxyxz0 xyToxT0y0M机动 目录 上页 下页 返回 结束 14.3 Partial DerivativesIf f is a function of two variables,its partial derivativesare the functions and defined by Notations for p

    17、artial derivatives If ,we writexfyf0(,)(,)(,)limxhf x h yf x yf x yh0(,)(,)(,)limyhf x y hf x yf x yh11(,)(,)xxxfzfx yff x yfD fD fxxx22(,)(,)yyyfzfx yff x yfD fD fyyy(,)zf x yRule for finding partial derivatives of 1.To find regard as a constant and differentiate with respect to 2.To find regard as

    18、 a constant and differentiate with respect toExample If ,find and .Solution(,)zf x yyfxfxy(,)f x y(,)f x yxy3232(,)2f x yxx yy2323(,)32(2,1)3 22 3 116xxfx yxxyf 2222(,)34(2,1)3 2 14 18yyfx yx yyf (2,1)xf(2,1)yfSolutionSolution1:xz)2,1(xzSolutionSolution2:)2,1(xz)2,1(yz,32yx yzyx23,82312)2,1(yz722134

    19、62xx1)62(xx81xz231yy 2)23(yy72yz机动 目录 上页 下页 返回 结束 Example If find and223yyxxz(1,2)xf(1,2).yfExample Ifzyzxxzyx2ln1 proof:xzyzxxzyxln1 yyxx yz,1yxyxxylnz2机动 目录 上页 下页 返回 结束,)and1,0(xxxzyprove thatSolutionSolution:机动 目录 上页 下页 返回 结束 Example If find and,)32(sin22xyyxzzxzyInterpretations of partial deriva

    20、tives00),(dd00 xxyxfxxfxxyy0),(yyyxfz00),(dd00yyyxfyyfxxyy0),(xxyxfzcan be interpreted geometrically as the slope of tangent through of curveyxz0 xyToxT0y0M机动 目录 上页 下页 返回 结束 o yM T0M0MoxM Tcan be interpreted geometrically as the slope of tangent through of curve ),()y,x(,),()y,x(,yxxy)y,x(f0000022So

    21、lution),(fx00 00000 x),(f),x(flimxxxxlimx00020 ,0),(fy00 00000 y),(f)y,(flimyyyylimy00020 ,0does not exist2200yxxylim),()y,x(0,0).at)y,x(flim),()y,x(00),(fx00),(fy00 andboth exist but f is not continuousbecause If f is a function of three variables x,y,z,its partial derivatives with respect to x is

    22、defind as0(,)(,)(,)limxhf x h y zf x y zf x y zhExample If 222zyxrSolution:yr2222zyxrxrzzr,ryfindrxry.rzandxrx2Higher derivativesIf then the second partial derivatives of f(,)zf x y22112222122221222222()()()()xxxxxyxyyxyxyyyyffzfffxxxxffzfffyxy xy xffzfffxyx yx yffzfffyyyy If then the partial deriva

    23、tives of order 3(,)zf x y233111233233112222()()xxxxxxxxyxxyffzfffxxxxffzfffyxy xy x Example find the second partial derivatives of Clairauts Theorem Suppose f is defined on a disk D that contains the point(a,b).If the functions and are both continuous on D,then 3232(,)2f x yxx yy23233232(,)32(,)3262

    24、(,)326xxxxyf x yxxyfx yxxyxyxfx yxxyxyy22222222(,)34(,)346(,)3464yyxyyf x yx yyfx yx yyxyxfx yx yyx yyxyfyxf(,)(,)xyyxfa bfa bSolutionyz Solution,xxyyx 23922zzx yxy,yyx19622 322()zzxy xxy,xy12 Example find32331,Ifzx yxyxy32zxy22yxlnz .yz022 proof),yxln(z2221 xz yz 22xz 22yz ,yxx22 ,yxy22 222222)yx(x

    25、x)yx(,)yx(xy22222 222222)yx(yy)yx(.)yx(yx22222 22xz 22yz 22222)yx(xy 22222)yx(yx .0 Example Show that the function 22xz is a solution of the equation232tan.xzzzIf zfindyxyxy(1).yzzIf zxyfindxyLinear Approximations and Differentials(),(,()()()()()()()()()f x is a differentiable function thetangentlin

    26、e of f at a f aisyf afa xaThe approximationf xf afa xais called thelinear approximation or tangent lineapproximation of f at a x is near aa(,()a f a()f x()L xx0()()()()()lim0 xyf xxf xdyfxxfx dxydyyfxxx (,()x f xxxxydy()()()()f xf afa xaDifferentials Let y=f(x)be a differentiable function with indep

    27、endent variable x.Then the differential,dx,of the independent variable x is an arbitrary increment of x;that is,dx=x;the differential,dy,of dependent variable y at the point x is dy=f(x)dx.14.4 Tangent Planes and Linear ApproximationsSuppose f has continuous partial derivatives.An equation of the ta

    28、ngent plane to the surface at the point is .(,)(,)()(,)()xyzf a bf a b x af a b y b(,)zf x y(,(,)p a b f a b(,)(,)(,)()(,)()xyf x yf a bf a b x af a b y bThe approximation is called the linear approximation.(,)(,)(,)()(,)()xyf x yf a bf a b x af a b y b(,)(,)(,)(,)xyf ax byf a bf a b xf a b y(,)(,)x

    29、yzf a b xf a b y xx ayy b Definition If ,then f is differentiable at(a,b),if can be expressed in the form where and as .Theorem If the partial derivatives and existnear(a,b)and are continuous at(a,b),then f isdifferentiable at(a,b).(,)zf x yz12(,)(,)xyzf a b xf a b yxy 120(,)(0,0)x y xfyfDifferentia

    30、lsFor a differentiable function of two variables,we define the differentials and to be independent variables;that is,they can be given any values.Then the differential ,also called the total differential,is defined by(,)zf x ydxdydz(,)(,)xyzzdzfx y dxfx y dydxdyxyIf we take then the differential of

    31、is ,dxxxa dyyyb z(,)()(,)()xydzf a b x af a b y b(,)(,)(,)()(,)()(,)xyf x yf a bf a b x af a b y bf a bdzthe linear approximation can be written as ),()y,x(,),()y,x(,yxxy)y,x(f0000022Solution),(fx00 00000 x),(f),x(flimxxxxlimx00020 ,0),(fy00 00000 y),(f)y,(flimyyyylimy00020 ,0(0,0).at),(fx00),(fy00

    32、andbut is not continuousboth exist),(fx00),(fy00 and(0,0)(0,0)0 xydzfxfy 1(,)(0,0)2zf x yf We have But at all points on the lineSo f is not differentiable at(0,0).yxFor a differentiable function of three variables,we define the differentials ,and to be independent variables;that is,they can be given

    33、 any values.Then the total differential du,is defined by(,)uf x y zdxdydzuuududxdydzxyyExample Find the differential of the function:)1,0().3(,2sin).2(,).1(22xxxueyxuyyxzyzyzSolution(1).dyyzdxxzdz xydx2 dyyx)2(2dzzudyyudxxudu).2(dx dyzeyyz)2cos21(dzyeyz dzzudyyudxxudu).3(dxyzxyz 1 xdylnzxyz xdzlnyxy

    34、z 14.5 The Chain RuleExample If 2,xyzedtdz3sin,xt and ytwhereFindSolution 3sin2ttze33sin232sin2(sin2)(cos6)ttttdzettttedtBecause So zyxtThe Chain Rule(Case 1)Suppose that is a differentiable function of and ,where and are both differentiable functions of .Then is a differentiable function of and ord

    35、zf dxf dydtx dty dtdzz dxz dydtx dty dt(,)zf x y()xg t()yh txyzttzyxtproofA change of in produces changes of in and in .these,in turn.produce a change of in .since f is differentiable,sotxyztxyz12ffzxyxyxy 120(,)(0,0)x y where andasDividing both sides of this equation by,twe get12zfxfyxytxtyttt 1200

    36、limlim()ttdzzfxfyxydttxtytttf dxf dyx dty dt Thus dtdzdtdyyzdtdxxz tcoseyx 2 2232t)(eyx ).tt(cosettsin2263 zyxtExample 2,xyzedtdz3sin,xt and ytwhereFindSolution Applying Case 1 of the Chain Rule,we getLet ,0uf tvg tug tvthen z=f t=uSo dzz duz dvdtu dtv dt 1lnvvvuftuug t 1lng tg tg tf tftf tf t gt ,0

    37、,.g tdf twhere f tf t and g tdtare differentiableFind Example Let z=excosy,x=sint and y=t2.FindSolution We find that.dtdzsin22cos(cos)(sin)(2)(cos cos2 sin).xxtdzz dxz dydtx dty dteyteytetttt The Chain Rule(Case 2)Suppose that is a differentiable function of and ,where and are differentiable functio

    38、ns of and .Then(,)z f x y(,)xg u v(,)yh u vxyuvzzxzyux uy u zzxzyvx vy v yxzuvExample Let z=xy,x=3u2+v2,and y=4u+2v.Find and Solution zu.zv122421224222122421224222(6)4(ln)6(42)(3)4(3)ln(3),(2)2(ln)2(42)(3)2(3)ln(3).yyuvuvyyuvuvzzxzyuxuyuyxuxxuuvuvuvuvzzxzyvxvyvyxvxxvuvuvuvuvApplying Case 2 of the Ch

    39、ain Rule,we getyxzuv),(),(mtsvmtsusztz),(vufz),(),(mtsmtsfzvuzstsvvzsuuztvvztuuzmmzmuuzmuuzLet ThenExample ,zzxy(1)yzxyIf FindSolution 121ln(1)ln(1)(1)(1)()ln(1)(1)ln(1)1yyyxyyxyyzyxyyyxyxzeeyxyyyyxxyxyyxyExample ,zzxy(1)yzxyIf FindSolution 121111ln0(1)ln1(1)ln(1)1vvvyvvyLet uxyvythen zuuxyvyzzuzvvu

    40、yuuyxyxuxv xzzuzvvuxuuyuyv yxxyxyyxy vuzxyExample zzxyzxyxy()zxyxF uIf and F is differentiable,show thatSolution 21()()()()()()()zuyF uxF uyF uxF uxxyzuxxxF uxxF uyyyzzxyzxyxy where xuyExample (,)zf x yIf findSolution 22zzxzyzzrsrx ry rxy where 22,2,xrsyrs.2rszLetf),xyz,zyx(fw has continuous second.

    41、,2xzwxwLet,zyxu,xyzv then),(vufw xw 1f 2fyz 2wz x 21fyzfz zf 12f y zfyz 2wxyzvu1f 2f xvvfxuuf )xyz,zyx(ff 11)xyz,zyx(ff 22xyz-order partial derivatives,findzf 1zvvfzuuf 1111f zf 2zvvfzuuf 2221f 12fxy 22fxy xzw211f 12fxy 2f y 21f(yz )fxy22 1211f)zx(yf 222f zxy 2f y ,uff 1,vff 2,uff 111,vff 112,uff 22

    42、1,vff 222Example 2uxyzIf findSolution where cos,sin,xpryprzpr.,urupuImplicit DifferentiationWe suppose that an equation of the form defines implicitly as a differentiable function of ,that is,where for all in the domain of f.If F is differentiable.Then(,)0F x y yx()yf x(,()0Fx f x x0 xyFd xFd yxd xy

    43、d xFFd yxFd xFy We suppose that an equation of the form defines implicitly as a differentiable function of and ,that is,where for all in the domain of f.If F is differentiable.Then (,)0Fxyz zxy(,)zf x y(,(,)0F x y f x y(,)x y00FxFzxxzxFyFzyyzyxzyzFFzxFxFzFFzyFyFzExample 1 Find if Solution Let then E

    44、xample 2 Find and if Solution Let then ysincossin cosxyxy(,)sincossin cosF x yxyxycoscos cos.sincos sinxyFdyxxyydxFyxy zxzy33361xyzxyz333(,)61F x y zxyzxyz222222.22xzyzFzxyzxFzxyFzyxzyFzxy Example 1 Find if Solution Let then Example 2 Find and if Solution Let then y336xyxy33(,)60F x yxyxy 222.2xyFdy

    45、xyydxFyx zxzy33361xyzxyz333(,)61F x y zxyzxyz222222.22xzyzFzxyzxFzxyFzyxzyFzxy 0 xyzez),(zyxFxyzezxz zxFF xyeyzz xyeyzzxyz2)xz(y )xyeyz(yz 2)xye()xyze(yz)xye)(yzyz(zzz 3222)xye()yxxyzee(zzzz yz zyFF xyexzz Example 1Find and if yzSolutionxyz2Example Find and if Solution zxzy(),()()xyzf u uup t dt14.6

    46、 Directional Derivatives and the Gradient VectorDefinition The directional derivative of f at in the direction of a unit vector is ),(00yxba,uhyxfhbyhaxfyxfh),(),(lim)(D000000,0uif this limit exists.The partial derivative of with respect to and are special cases of the directional derivative.fxyof a

    47、t the point in the direction off),(00yxp)(D0,0uyxfis the rate of change.,ubaTheorem if is a differentiable function of and ,then has a directional derivative in the direction of any unit vector andfxyfba,ubyxfayxfyxfDyxu),(),(),(ProofIf we define a function of the single variableghby),()(00hbyhaxfhg

    48、then),(),(),(lim)0()(lim)0(00000000yxfDhyxfhbyhaxfhghgguhhOn the other hand,we can write).,(),()(00yxfhbyhaxfhgBy the Chain Rule,we havebyxfayxfhyyfhxxfhgyx),(),()(.),(),()0(0000byxfayxfgyxIt follows thatTherefore.),(),(),(000000byxfayxfyxfDyxuExample Find the directional derivative of at thegiven p

    49、oint in the direction indicated by the anglef.Solution 3)0,2(sin),(xxyxfbyxfayxfyxfDyxu),(),(),(3sin,3cossin,cos,ubaThe Gradient VectorTheorem if is a function of two variables and ,then the gradient of is the vector funtion defined byfxyffji),(),(),(yfxfyxfyxfyxfyxbyxfayxfuyxfyxfDyxu),(),(),(),(We

    50、havegreidint Definition The directional derivative of f at in the direction of a unit vector is ),(000zyxcba,uhzyxfhzzhbyhaxfzyxfh),(),(lim),(D000000000,0uif this limit exists.hfuhffh)x()x(lim)x(D0000uIf we use vector notation,thenWhere If n=3.000,xzyxuzyxfzyxfDu),(),(kji),(),(),(),(zfyfxfzyxfzyxfzy

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:微积分教学-chapter14课件.ppt
    链接地址:https://www.163wenku.com/p-4528784.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库