微积分教学-chapter14课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分教学-chapter14课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 教学 chapter14 课件
- 资源描述:
-
1、Chapter 14 Partial Derivatives 14.1 Functions of Several Variables 14.2 Limits and Continuity 14.3 Partial Derivatives 14.4 Tangent Planes and Linear Approximations 14.5 The Chain Rule 14.6 Directional Derivatives and the Gradient Vector 14.7 Maximum and Minimum Values 14.8 Lagrange MultipliersSo fa
2、r we have dealt with the calculus of functions of a single variable.But,in the real world,physical quantities often dependon two or more variables,so in this chapter we turn our attention to functions of several variables and extend the basic ideas of differential calculus to such functions.14.1 Fun
3、ctions of Several VariablesIn this section we study functions of two or more variables from four points of view:nVerbally (by a description in words)nNumerically (by a table of values)nAlgebraically (by an explicit formula)nVisually (by a graph or level curves)Functions of Two VariablesDefinition A
4、function of two variables is a rule that assigns to each ordered pair of real numbers(x,y)in a set D a unique real number denoted by f(x,y).The set D is the domain of f and its range is the set of values that f takes on,that is,f(x,y)|(x,y)D.We often write z=f(x,y)to make explicit the value taken on
5、 by f at the general point(x,y).The variables x and y are independent variablesand z is the dependent variable.(x,y)f(x,y)xyzfExample 1 Find the domains of the following functions and evaluate f(3,2).(a)(b)Solution(a)(b)11),(xyxyxf)ln(),(2xyxyxf1,01,2613123)2,3(xyxyxDf22,0)32ln(3)2,3(yxyxDf2201yxxxy
6、22ln()1xzyxxy220010yxxxyExample Find the domain ofSolution 22()(,)10D fx y xyandyxandxthe domain is:yyyyyxooooo ooyx221xy000oO o0ooExample32(,)23f u vuuvv12,uvthenxyLet 321 21122(,)()2()()3()fx yxxyy321412xxyy3212(,),(,)23.Find fwhere f x yxxyyxy32(,)23f x yxxyySolutionGraphs Another way of visualiz
7、ing the behavior of a function of two variables is to consider its graph.Definition If f is a function of two variables with domain D,then the graph of f is the set of all points(x,y,z)in suchthat z=f(x,y)and(x,y)is in D.3RxyzD(,(,)x y f x y(,0)x yS 22zxy22zRxyLevel curvesDefinition The level curves
8、 of a function of two variables are the curves with equations f(x,y)=kwhere k is a constant(in the range of f).Sketch some level curves of the functionExample22(,)4f x yxyFunctions of Three or More Variables A function of three variables,f,is a rule that assigns to each ordered triple(x,y,z)in a dom
9、ain D a unique real number denoted by f(x,y,z).A function of n variables,f,is a rule that assigns a number to an n-tuple of real number.We denoted by the set of all such n-tuples.3RnR12(,)nx xx12(,)nzf x xx14.2 Limits and ContinuityDefinition Let f be a function of two variables whosedomain D includ
10、es points arbitrarily close to(a,b).Then we say that the limit of f(x,y)as(x,y)approaches(a,b)is L and we write if for every number there is a corresponding number such that whenever and(,)(,)lim(,)x yabf x yL00(,)f x yL(,)x yD220()()xaybExample Find if it exists.222(,)(0,0)3limx yx yxySolutionLet 0
11、Since 222223033x yyxyxyIf we choose 3,then22230 x yxywhenever220 xyHence 222(,)(0,0)3lim0 x yx yxyIf as along a path and as along a path ,where ,then does not exist.Example does not exist.Solution as along the x-axis as along the y-axis(,)(,)lim(,)x ya bf x y1(,)f x yL(,)(,)x ya b1C2(,)f x yL(,)(,)x
12、 ya b2C12LL2222(,)(0,0)limx yxyxy(,)1f x y(,)(0,0)x y(,)1f x y (,)(0,0)x y Thus the given limit does not exist.Example does not exist?22(,)(0,0)limx yxyxySolution2222(,)(0,0)(,)(0,0)1limlim2x y xx y xxyx xxyxx2222(,2)(0,0)(,)(0,0)22limlim54x yxx y xxyxxxyxxThus the given limit does not exist.Since E
13、xample Find.11lim00yxyxyx)11(1)1(lim200yxxyyxyx21111lim00yxyx.11lim00yxyxyxSolutionExample Find1Solution01xysinxylim.x01xysinxylimx01xysinxylimyxy22222001()()xycos xylimxyExample FindSolution222rxy,Let2404 1r(cos r)limr2304224rsin rrlimrSoContinuityDefinition A function f of two variables is called
14、continuous at(a,b)if We say f is continuous on D if f is continuous at Every point(a,b)in D.Example (,)(,)lim(,)(,)x ya bf x yf a b23322 33 2(,)(1,2)lim(32)12123 1 2 2 11x yx yx yxy Example where is the following function continuous.2223(,)0(,)0(,)0 x yifx yf x yxyifx ySolutionThe function f is cont
15、inuous for(,)0 x y since it is equal to a rational function there.The function f is continuous at(0,0)because 222(,)(0,0)3lim0 x yx yxySo the function is continuous in 2.RExample where is the following function discontinuous.11),(22yxyxf22(,)1Dx y xySolutionsince f a rational function,it is continuo
16、us on itsdomain,which is the set So the function is discontinuous on the circle.221xy00(,)()(,)zf x yg xf x yyy00(,)()(,)zf x yh yf xyxxyxz0 xyToxT0y0M机动 目录 上页 下页 返回 结束 14.3 Partial DerivativesIf f is a function of two variables,its partial derivativesare the functions and defined by Notations for p
17、artial derivatives If ,we writexfyf0(,)(,)(,)limxhf x h yf x yf x yh0(,)(,)(,)limyhf x y hf x yf x yh11(,)(,)xxxfzfx yff x yfD fD fxxx22(,)(,)yyyfzfx yff x yfD fD fyyy(,)zf x yRule for finding partial derivatives of 1.To find regard as a constant and differentiate with respect to 2.To find regard as
18、 a constant and differentiate with respect toExample If ,find and .Solution(,)zf x yyfxfxy(,)f x y(,)f x yxy3232(,)2f x yxx yy2323(,)32(2,1)3 22 3 116xxfx yxxyf 2222(,)34(2,1)3 2 14 18yyfx yx yyf (2,1)xf(2,1)yfSolutionSolution1:xz)2,1(xzSolutionSolution2:)2,1(xz)2,1(yz,32yx yzyx23,82312)2,1(yz722134
19、62xx1)62(xx81xz231yy 2)23(yy72yz机动 目录 上页 下页 返回 结束 Example If find and223yyxxz(1,2)xf(1,2).yfExample Ifzyzxxzyx2ln1 proof:xzyzxxzyxln1 yyxx yz,1yxyxxylnz2机动 目录 上页 下页 返回 结束,)and1,0(xxxzyprove thatSolutionSolution:机动 目录 上页 下页 返回 结束 Example If find and,)32(sin22xyyxzzxzyInterpretations of partial deriva
20、tives00),(dd00 xxyxfxxfxxyy0),(yyyxfz00),(dd00yyyxfyyfxxyy0),(xxyxfzcan be interpreted geometrically as the slope of tangent through of curveyxz0 xyToxT0y0M机动 目录 上页 下页 返回 结束 o yM T0M0MoxM Tcan be interpreted geometrically as the slope of tangent through of curve ),()y,x(,),()y,x(,yxxy)y,x(f0000022So
21、lution),(fx00 00000 x),(f),x(flimxxxxlimx00020 ,0),(fy00 00000 y),(f)y,(flimyyyylimy00020 ,0does not exist2200yxxylim),()y,x(0,0).at)y,x(flim),()y,x(00),(fx00),(fy00 andboth exist but f is not continuousbecause If f is a function of three variables x,y,z,its partial derivatives with respect to x is
22、defind as0(,)(,)(,)limxhf x h y zf x y zf x y zhExample If 222zyxrSolution:yr2222zyxrxrzzr,ryfindrxry.rzandxrx2Higher derivativesIf then the second partial derivatives of f(,)zf x y22112222122221222222()()()()xxxxxyxyyxyxyyyyffzfffxxxxffzfffyxy xy xffzfffxyx yx yffzfffyyyy If then the partial deriva
23、tives of order 3(,)zf x y233111233233112222()()xxxxxxxxyxxyffzfffxxxxffzfffyxy xy x Example find the second partial derivatives of Clairauts Theorem Suppose f is defined on a disk D that contains the point(a,b).If the functions and are both continuous on D,then 3232(,)2f x yxx yy23233232(,)32(,)3262
24、(,)326xxxxyf x yxxyfx yxxyxyxfx yxxyxyy22222222(,)34(,)346(,)3464yyxyyf x yx yyfx yx yyxyxfx yx yyx yyxyfyxf(,)(,)xyyxfa bfa bSolutionyz Solution,xxyyx 23922zzx yxy,yyx19622 322()zzxy xxy,xy12 Example find32331,Ifzx yxyxy32zxy22yxlnz .yz022 proof),yxln(z2221 xz yz 22xz 22yz ,yxx22 ,yxy22 222222)yx(x
25、x)yx(,)yx(xy22222 222222)yx(yy)yx(.)yx(yx22222 22xz 22yz 22222)yx(xy 22222)yx(yx .0 Example Show that the function 22xz is a solution of the equation232tan.xzzzIf zfindyxyxy(1).yzzIf zxyfindxyLinear Approximations and Differentials(),(,()()()()()()()()()f x is a differentiable function thetangentlin
展开阅读全文