自动控制原理(胡寿松)第六版-第二章-控制系统的数学模型-2课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《自动控制原理(胡寿松)第六版-第二章-控制系统的数学模型-2课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 胡寿松 第六 第二 控制系统 数学模型 课件
- 资源描述:
-
1、前言前言 数学模型基础数学模型基础2.1 2.1 控制系统的时域数学模型控制系统的时域数学模型2.2 2.2 控制系统的复数域数学模型控制系统的复数域数学模型2.3 2.3 控制系统的结构图与信号流图控制系统的结构图与信号流图2.4 2.4 控制系统建模实例控制系统建模实例End End 1.1.定义定义:数学模型是指出系统内部物理量(或变量)之间动数学模型是指出系统内部物理量(或变量)之间动态关系的表达式。态关系的表达式。2.5 2.2.建立数学模型的目的建立数学模型的目的 建立系统的数学模型,是分析和设计控制系统的首要工作建立系统的数学模型,是分析和设计控制系统的首要工作(或基础工作)。(
2、或基础工作)。自控系统的组成可以是电气的、机械的、液压或气动的等等,自控系统的组成可以是电气的、机械的、液压或气动的等等,然而描述这些系统发展的模型却可以是相同的。因此,通过数学然而描述这些系统发展的模型却可以是相同的。因此,通过数学模型来研究自动控制系统,可以摆脱各种不同类型系统的外部特模型来研究自动控制系统,可以摆脱各种不同类型系统的外部特征,研究其内在的共性运动规律。征,研究其内在的共性运动规律。2.22.32.4 1)1)相似性:不同性质的系统,具有相同的数学模型。抽象的变量和系相似性:不同性质的系统,具有相同的数学模型。抽象的变量和系统统 2)2)简化性和准确性:忽略次要因素,简化之
3、,但不能太简单,结果合简化性和准确性:忽略次要因素,简化之,但不能太简单,结果合理理 3)3)动态模型:变量各阶导数之间关系的微分方程。动态模型:变量各阶导数之间关系的微分方程。4)4)静态模型:静态条件下,各变量之间的代数方程。静态模型:静态条件下,各变量之间的代数方程。1)1)微分方程:时域微分方程:时域 其它模型的基础其它模型的基础 直观直观 求解繁琐求解繁琐 2)2)传递函数:复频域传递函数:复频域 微分方程拉氏变换后的结果微分方程拉氏变换后的结果 3)3)频率特性:频域频率特性:频域 分析方法不同,各有所长分析方法不同,各有所长6.6.由数学模型求取系统性能指标的主要途径由数学模型求
4、取系统性能指标的主要途径求解求解观察观察线性微分方程线性微分方程性能指标性能指标传递函数传递函数时间响应时间响应 频率响应频率响应拉氏变换拉氏变换拉氏反变换拉氏反变换估算估算估算估算计算计算傅傅氏氏变变换换S=j频率特性频率特性 1)1)分析法:根据系统各部分的运动机理,按有关定理列方分析法:根据系统各部分的运动机理,按有关定理列方程,合在一起。程,合在一起。2)2)实验法:黑箱问题。施加某种测试信号,记录输出,用实验法:黑箱问题。施加某种测试信号,记录输出,用系统辨识的方法,得到数学模型。系统辨识的方法,得到数学模型。三个基本的无源元件:质量三个基本的无源元件:质量m,m,弹簧弹簧k,k,阻
5、尼器阻尼器f f对应三种阻碍运动的力对应三种阻碍运动的力:惯性力惯性力ma;ma;弹性力弹性力ky;ky;阻尼力阻尼力fvfv 例例2-1 2-1 弹簧弹簧-质量质量-阻尼器串联系统。阻尼器串联系统。试列出以外力试列出以外力F(t)为输入量,以质量的位移为输入量,以质量的位移y(t)为为输出量的运动方程式。输出量的运动方程式。解:遵照列写微分方程的一般步骤有:解:遵照列写微分方程的一般步骤有:(1 1)确定)确定输入量输入量为为F(t),输出量输出量为为y(t),作用于质,作用于质量量m的力还有弹性阻力的力还有弹性阻力Fk(t)和粘滞阻力和粘滞阻力Ff(t),均作为,均作为中间变量。中间变量。
6、(2)设系统按线性集中参数考虑)设系统按线性集中参数考虑,且无外力作用时,且无外力作用时,系统处于平衡状态。系统处于平衡状态。KmfF(t)y(t)2.12.1控制系统的时域数学模型控制系统的时域数学模型 (3 3)按牛顿第二定律列写原始方程,即)按牛顿第二定律列写原始方程,即kytFk )()(dtdyffvtFf (5 5)将以上辅助方程式代入原始方程)将以上辅助方程式代入原始方程,消去中消去中间变量间变量,得得)(22tFdtdyfkydtydm (6 6)整理方程得标准形)整理方程得标准形)(122tFkydtdykfdtydkm )()()(22 dtydmtFtFtFFfk (4
7、4)写中间变量与输出量的关系式)写中间变量与输出量的关系式KmfF(t)y(t)例例2-2 2-2 电阻电感电容串联系统。电阻电感电容串联系统。R-L-CR-L-C串联电路,试列出以串联电路,试列出以u ur r(t t)为输入量,为输入量,u uc c(t t)为输出量的网络微分方程式。为输出量的网络微分方程式。令令Tm2=m/k,Tf=f/k,则方程化为,则方程化为)(1222tFkydtdyTdtydTfm R C ur(t)uc(t)L 解:解:(1 1)确定输入量)确定输入量为为ur(t),输出量为,输出量为uc(t),中,中间变量为间变量为i(t)。rcuuRidtdiL (4 4
8、)列写中间变量)列写中间变量i与输出变量与输出变量uc c 的关系式的关系式:dtduCic(5 5)将上式代入原始方程,消去中间变量得)将上式代入原始方程,消去中间变量得 R C ur(t)uc(t)L(2 2)网络按线性集中参数考虑且忽略输出端负载效应。)网络按线性集中参数考虑且忽略输出端负载效应。(3 3)由)由KVLKVL写原始方程:写原始方程:i(t)(6 6)整理成标准形,令)整理成标准形,令T1=L/R,T2=RC,则方程化为则方程化为rcccuudtduTdtudTT 22221 2.2.4 2.2.4 线性微分方程的一般特征线性微分方程的一般特征 观察实际物理系统的运动方程,
9、若用线性定常特性来描述,则方程一般具观察实际物理系统的运动方程,若用线性定常特性来描述,则方程一般具有以下形式:有以下形式:cadtdcadtcdadtcdannnnnn 11110 rbdtdrbdtrdbdtrdbmmmmmm 11110rcccuudtduRCdtudLC 22 Ra和和La分别是电枢绕组总电阻和总电感。在完成能量转换的过分别是电枢绕组总电阻和总电感。在完成能量转换的过程中,其绕组在磁场中切割磁力线会产生感应反电势程中,其绕组在磁场中切割磁力线会产生感应反电势Ea,其大小与,其大小与M Ra ua La ia if=常数常数 Ea激磁磁通及转速成正比,方向与外加电枢电压激
10、磁磁通及转速成正比,方向与外加电枢电压ua相反。相反。下面推导其微分方程式。下面推导其微分方程式。(1)取电枢电压)取电枢电压ua为控制输入,负载转矩为控制输入,负载转矩ML为扰动输入,电动机为扰动输入,电动机角速度角速度 为输出量;为输出量;(2)忽略电枢反应、磁滞、涡流效应等影响,当激磁电流不变)忽略电枢反应、磁滞、涡流效应等影响,当激磁电流不变if 时,时,激磁磁通视为不变,则将变量关系看作线性关系;激磁磁通视为不变,则将变量关系看作线性关系;(3)列写原始方程式)列写原始方程式 电枢回路方程:电枢回路方程:aaaaaauEiRdtdiL uaMRaLa ia if=常数常数Ea电动机轴
11、上机械运动方程:电动机轴上机械运动方程:LDMMdtdJ J 负载折合到电动机轴上的转动惯量负载折合到电动机轴上的转动惯量;MD 电枢电流产生的电磁转矩电枢电流产生的电磁转矩;ML 合到电动机轴上的总负载转矩。合到电动机轴上的总负载转矩。(4)列写辅助方程)列写辅助方程 Ea =ke ke 电势系数,由电动机结构参数确定。电势系数,由电动机结构参数确定。MD=km iakm 转矩系数,由电动机结构参数确定。转矩系数,由电动机结构参数确定。(5)消去中间变量,得)消去中间变量,得LmmmLmDaMkdtdkJkMdtdJkMi1 电动机轴上转矩平衡方程:电动机轴上转矩平衡方程:)()()()(t
12、MtMtfdttdJcmmmmm Jm=J 负载折合到电动机轴上的转动惯量负载折合到电动机轴上的转动惯量;Mm=MD 电枢电流产生的电磁转矩电枢电流产生的电磁转矩;Mc =ML 合到电动机轴上的总负载转矩。合到电动机轴上的总负载转矩。(4)列写辅助方程)列写辅助方程 Ea =Ce Ce =Ke 电势系数,由电动机结构参数确定。电势系数,由电动机结构参数确定。Mm=km iakm 转矩系数,由电动机结构参数确定。转矩系数,由电动机结构参数确定。(5)消去中间变量,得)消去中间变量,得LmmmLmDaMkdtdkJkMdtdJkMi1 aaaaaauEiRdtdiL LmmmLmDaMkdtdwk
13、JkMdtdwJkMi1dtdMkkLMkkRukdtdkkJRdtdkkJLLmeaLmeaaemeamea 122 dtdMkLMkRukdtdkJRdtdkJLLmaLmaaemama22dtdMkkLMkkRukdtdkkJRdtdkkJLLmeaLmeaaemeamea 122 meamkkJRT 令机电时间常数令机电时间常数Tm:令电磁时间常数令电磁时间常数Ta:aaaRLT 1)1)当电枢电感较小时,可忽略,可简化上式如下:当电枢电感较小时,可忽略,可简化上式如下:LmaemMJTukdtdT10aT2-22 一阶系统一阶系统dtdMJTTMJTukdtdTdtdTTLmaLma
14、emma 122 二阶系统二阶系统(2-21)2)对微型电机,转动惯量对微型电机,转动惯量J很小,且很小,且Ra、La都可忽略都可忽略eaaekuuk 13)随动系统中,取随动系统中,取为输出为输出LmaemMJTukdtddtdTdtd1224)在实际使用中,转速常用在实际使用中,转速常用n n(r/minr/min)表示表示,设设 ML=0aemmaukndtdnTdtndTT2213022230602eekknn,令代入0 meamkkJRT0 aaaRLTdtdMJTTMJTukdtdTdtdTTLmaLmaemma 122 1)1)分析系统运动的因果关系,确定系统的分析系统运动的因果
15、关系,确定系统的、及内部及内部,搞清各变量之间的关系。搞清各变量之间的关系。2)2)忽略一些次要因素,忽略一些次要因素,。3)3)根据相关基本定律,列出各部分的根据相关基本定律,列出各部分的。4)4)列写中间变量的列写中间变量的。!5)5)联立上述方程,消去中间变量,得到只包含输入输出的方程式。联立上述方程,消去中间变量,得到只包含输入输出的方程式。6)6)将方程式化成标准形。将方程式化成标准形。2.52.12.32.43.3.线性系统的基本特性线性系统的基本特性cadtdcadtcdadtcdannnnnn 11110 rbdtdrbdtrdbdtrdbmmmmmm 11110观察实际物理系
16、统的运动方程,若用线性定常特性来描述,观察实际物理系统的运动方程,若用线性定常特性来描述,则方程一般具有以下形式:则方程一般具有以下形式:式中,式中,c(t)是系统的输出变量,是系统的输出变量,r(t)是系统的输入变量。是系统的输入变量。从工程可实现的角度来看,上述微分方程满足以下约束:从工程可实现的角度来看,上述微分方程满足以下约束:(3 3)方程式两端的各项的量纲应一致。利用这点,可以检查微)方程式两端的各项的量纲应一致。利用这点,可以检查微分方程式的正确与否。分方程式的正确与否。cadtdcadtcdadtcdannnnnn11110 rbdtdrbdtrdbdtrdbmmmmmm111
17、1022()d ydymfkyF tdtdt221rd qdqLRqudtdtC:任何系统,只要它们的微分方程具有相同的形:任何系统,只要它们的微分方程具有相同的形式。在方程中,占据相同位置的量,相似量。式。在方程中,占据相同位置的量,相似量。上面两个例题介绍的系统,就是相似系统。上面两个例题介绍的系统,就是相似系统。例例2-1例例2-2令令uc=q/CrcccuudtduRCdtudLC 22当分析一个当分析一个机械系统或不易进行试机械系统或不易进行试验的系统时,可以建造验的系统时,可以建造一个与它相似的电模拟一个与它相似的电模拟系统,来代替对它的研系统,来代替对它的研究。究。非线性非线性系
18、统:用非线性微分方程描述。系统:用非线性微分方程描述。)(2tFykydtdyf )(tFkydtdyf )()(tFytkdtdyf *微分方程的类型微分方程的类型 线性线性定常定常系统:用线性微分方程描述,微分方程的系数是常数。系统:用线性微分方程描述,微分方程的系数是常数。线性系统的线性系统的重要性质重要性质:满足叠加性和均匀性(齐次性)。即:满足叠加性和均匀性(齐次性)。即:如果输入如果输入r1(t)输出输出y1(t),输入,输入r2(t)输出输出y2(t)则输入则输入a r1(t)+b r2(t)输出输出a y1(t)+by2(t)线性线性系统:用线性微分方程描述。系统:用线性微分方
19、程描述。线性线性时变时变系统:用线性微分方程描述,微分方程的系数是系统:用线性微分方程描述,微分方程的系数是随时间而变化的。随时间而变化的。2.2.12.2.32.2.4xdxxdfyxx 0)(22200)()(!21)()(00 xdxxfdxdxxdfxfyyyxxxxxdx)x(df)x(fyyy0 xx00 5 非线性元件微分方程的线性化非线性元件微分方程的线性化小偏差线性化:小偏差线性化:用台劳级数展开,略去二阶以上导数项。用台劳级数展开,略去二阶以上导数项。一、一、假设假设:x,y在平衡点(在平衡点(x0,y0)附近变化,即附近变化,即 x=x0+x,y=y0+y二、二、近似处理
20、近似处理略去高阶无穷小项略去高阶无穷小项 严格地说,实际控制系统的某些元件含有一定的非线性特性,而严格地说,实际控制系统的某些元件含有一定的非线性特性,而非线性微分方程的求解非常困难。如果某些非线性特性在一定的工非线性微分方程的求解非常困难。如果某些非线性特性在一定的工作范围内,可以用线性系统模型近似,称为非线性模型的线性化。作范围内,可以用线性系统模型近似,称为非线性模型的线性化。三、三、数学方法数学方法2.2.12.2.42.2.2一一.复习拉氏变换及其性质复习拉氏变换及其性质 1.定义定义 记记 X(s)=Lx(t)2.2.进行拉氏变换的条件进行拉氏变换的条件 1)1)t 0 0,x(t
21、)=0 0;当;当t 0 0,x(t)是分段连续;是分段连续;2)2)当当t t充分大后满足不等式充分大后满足不等式 x(t)Mect,M,c是常数。是常数。3.3.性质和定理性质和定理 1)1)线性性质线性性质 L ax1(t)+bx2(t)=aX1(s)+bX2(s)0)()(dtetxsXst)0()()(xssXdttdxL 2)2)微分定理微分定理)()(ssXdttdxL 若若 ,则则 0)0()0(xx)()(222sXsdttxdL )()(sXsdttxdLnnn )0()0()()(222xsxsXsdttxdL sXsdttxL1 )0(1)0(1)(1)()2()1(2
22、2 xsxssXsdttxL若若x 1(0)=x 2(0)=0,x(t)各重积分在各重积分在t=0的值为的值为0时,时,3)3)积分定律积分定律 )0(1)(1)()1(xssXsdttxLX(-1)(0)是是x(t)dt 在在t=0 0的值。同理的值。同理 sXsdttxL21 sXsdttxLnn1 5)5)初值定理初值定理 如果如果x(t)及其及其一阶导数是可拉氏变换的,并且一阶导数是可拉氏变换的,并且 4)4)终值定理终值定理 若若x(t)及其一阶导数都是可拉氏变换的,及其一阶导数都是可拉氏变换的,lim x(t)存在,并且存在,并且sX(s)除原点为单极点外,在除原点为单极点外,在j
23、轴上及其右半平面内应没有其它极点,轴上及其右半平面内应没有其它极点,则函数则函数x(t)的终值为:的终值为:)(lim)(lim0ssXtxst )(lim)0(ssXxs )(limssXs 存在,则存在,则6)6)延迟定理延迟定理L x(t )1(t )=esX(s)Le at x(t)=X(s+a)7)7)时标变换时标变换)(asaXatxL 8)8)卷积定理卷积定理 tdxtxLsXsX02121)()()()(4.4.举例举例 1 1、求单位阶跃函数求单位阶跃函数 x(t)=1(t)的拉氏变换。的拉氏变换。解:解:2 2、求单位斜坡函数求单位斜坡函数x(t)=t的拉的拉氏变换。氏变换
24、。解:解:020011 )()(sdtesestdttetxLsXststst 2)1(1)0(11)(11 )(1)(sstLsdttLtLsX sesdtetxLsXstst11)()(003 3、求正弦函数求正弦函数x(t)=sint 的拉氏变换。的拉氏变换。解:解:jeettjtj2sin 02dtejeesXsttjtj 221121 sjsjsj 以上几个函数是比较常用的,还有一些常用函数的拉氏变换以上几个函数是比较常用的,还有一些常用函数的拉氏变换可查表求得。可查表求得。1)(cos22 tLsstL 4 4、求函数求函数x(t)的拉氏变换。的拉氏变换。00,0 00 )(ttt
25、ttAtxtx(t)0At0tx1(t)0Atx2(t)0t0 A+)1()(00ststesAesAsAsX 解:解:x(t)=x1(t)+x2(t)=A 1(t)A 1(t t0)asesadteesXtsastat 11)(0)(05 5、求求e at 的拉氏变换的拉氏变换。解解:asetLsXat 1)(1)(6 6、求求e 0.2 t 的拉氏变换的拉氏变换。解:解:15551152.0sseLeLtt ,求,求x(0),x()。解:解:7 7、若若0lim)(lim)(00 assssXxss 1.1.定义定义 由象函数由象函数X(s)求原函数求原函数x(t)0)()(21)()(1
展开阅读全文