第7讲一元一次方程解决实际问题(共59张)(教育机构专用)2020年七年级数学课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第7讲一元一次方程解决实际问题(共59张)(教育机构专用)2020年七年级数学课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育机构专用 一元一次方程 解决 实际问题 59 教育 机构 专用 2020 七年 级数 课件
- 资源描述:
-
1、2020授课教师:第 7 讲:一元一次方程解决实际问题(2)日期:2020年10月30日培优专用01基础导学P0502分类解析P57目录 CONTENTS和差倍分问题基础导学利用关键词(大、小、共、增加、减少)列方程1.倍数关系 关键词:是几倍、增加几倍、增加百分之几2.多少关系 关键词:多、少、和、差、不足等积变形、面积问题常见等量关系:原体积=成品体积圆柱体体积公式=底面积高长方体体积公式=长宽高调配问题这类问题搞清楚人数的变化,题型有:有调入有调出;或只有调入(出)无调出(入)基 础 导 学培优专用比例分配问题基础导学一般思路:设其中一份为x,利用已知的比,写出相应的代数式等量关系:各部
2、分之和=总量年龄问题年龄差不变比赛积分问题1.分析题意,分别确定胜负一场的得分;2.设未知数,写出胜场积分与负场积分;3.根据题意列方程,求解,检验基 础 导 学培优专用方案选择问题基础导学读懂题意,根据题意列出方程或等式,比较费用古典数学问题理解图文意义,合理设出未知数,找出等量关系,得到方程求解其它问题基 础 导 学培优专用动点问题,阅读材料问题等等01基础导学P0502分类解析P57目录 CONTENTS例 1.(2020河北文安初一期末)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()和差
3、倍分问题培优专用【答案】设从甲煤场运煤x吨到乙煤场,可得:518x=2(106+x)例 2.(2020山西初一期末)列方程求解应用题.七年级(2)班共有学生44人,其中女生比男生多4人,求男生的人数;和差倍分问题培优专用【答案】设男生人数为x人,则女生为44-x人,根据题意,可列方程为44-x=x+4,解得:x=20,答:男生的人数为20人.例 3.(2020山东东明初一期末)若正方形的边长增加3cm,它的面积就增加39cm,则正方形的边长原来是()A8cm B6cm C5cm D10cm面积(体积)问题培优专用【答案】设正方形的边长为x cm,由题意得:6x+9=39,解得:x=5,故答案为
4、:C.例 4.(2020江苏南京期末)如图,一块长4厘米、宽1厘米的长方形纸板,一块长5厘米、宽2厘米的长方形纸板与一块正方形纸板以及另两块长方形纸板和,恰好拼成一个大正方形,则大正方形的面积是_平方厘米面积(体积)问题培优专用【答案】设小正方形的边长为x,依题意得1+x+2=4+5x,解得:x=3,大正方形的边长为6厘米,大正方形的面积是66=36(平方厘米)例 5.(2020内蒙古海勃湾初一期末)在数学活动课上,小聪把一张白卡纸画出如图所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图的正方形ABCD,若中间小正方形的边长为2,则正方形ABCD的周长是 _ 面积(体积)
5、问题培优专用例 6.(2020广东期末)某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是调配问题培优专用【答案】设应从乙处调x人到甲处,依题意,得:30+x=2(24x)例 7.(2020湖南雨花初一期末)请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_只,树为_棵调配问题培优专用【答案】设树有x棵依题意列方程:4x+55(x1)解得:x10所以树有10棵,鸦的个数为:104+545故答案为45,10例
6、8.某校六年级有64人,分成甲、乙、丙三队,其人数比为4:5:7若由外校转入1人加入 乙队,则后来乙与丙的人数比为何?A3:4B4:5 C5:6D6:7比例问题培优专用【答案】设甲、乙、丙三队,其人数分别为4x,5x,7x,由题意得4x+5x+7x=64,解得x=4,故乙队有45=20人,丙队有47=28人由外校转入1人加入乙队后乙与丙的人数比为:21:28,即3:4故选A例 9.某公司门口有一个长为900cm的长方形电子显示屏,公司的有关活动信息都会在电子显示屏上显示字幕由于每次活动的信息不同,所以字幕的字数也就不等为了制作及显示时方便,负责发布活动信息的员工对有关数据作出了如下规定:边空宽
7、:字宽:字距=3:4:1请用列方程的方法解决下列问题:(1)若某次活动字幕的字数为17,则字距是多少?(2)若某次活动字幕的字宽为45cm,则字数是多少?比例问题培优专用培优专用例 10.加工某种工件,须顺次进行三道工序,工作量的比依次是214甲完成一个工件与第二个工件的前两道工序,所用时间为t已知甲和乙的加工效率比是67,则乙完成一个工件,需要的时间是t的_倍比例问题培优专用例 11.(2020山西初一期末)列方程求解应用题.假设小明今年年龄为13岁,他的数学老师今年的年龄为36岁,请你据此设计一个解一元一次方程的应用题,并完成解答.年龄问题培优专用例 12.在2019年女排世界杯比赛中,中
8、国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x场,则根据以上信息所列方程是_.积分问题培优专用【答案】设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11x)场,依题意,得:2x+3(11x)32大比分大比分胜(积分)胜(积分)负(积分)负(积分)3:0303:1303:221例 13.盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积_分,胜一场积_分(2)某队在比完22场的前提下
9、,胜场总积分能等于其负场总积分的2倍吗?请说明理由积分问题培优专用院系篮球赛成绩公告院系篮球赛成绩公告比赛场次比赛场次胜场负场积分2212103422148362202222培优专用【答案】(1)由表中最后一行的信息可知,某队22场全负共积了22分,负一场的积分为:2222=1(分);设胜一场积a分,则由表中第一行信息可得:12a+10=34,解得:a=2,胜一场积2分;(2)设该队胜了x场,根据题意可得:2x=2(22-x),解得:x=11,若某队赛完全部22场,胜了11场,则该队的胜场积分是负场积分的2倍.答:若该队在22场比赛中胜了11场,则其胜场积分是负场积分的2倍.例 14.为了促进
10、全民健身运动的开展,某市组织了一次足球比赛,下表记录了比赛过程中部分代表队的积分情况.(1)本次比赛中,胜一场积_分;(2)参加此次比赛的F代表队完成10场比赛后,只输了一场,积分是23分,请你求出F代表队胜出的场数.积分问题培优专用代表队代表队场次(场)场次(场)胜(场)胜(场)平(场)平(场)负(场)负(场)积分(分)积分(分)A651016B660018C632111D631210ABCDABCD培优专用【答案】(1)根据B代表队的积分情况可得胜一场的积分情况:186=3(分)(2)由A代表队的积分情况得出平一场的积分情况:(16-35)1=1(分)由C代表队的积分情况得出负一场的积分情
11、况:(11-33-21)1=0(分)设F代表队胜出的场数为x,则平场为(9-x)场,列方程得:3x+1(9-x)=23解方程得:x=7例 15.(2020河北饶阳 期末)某品牌西服标价200元,领带标价40元,若去甲商店购买可享受买一送一(即买一套西 服送一条领带)的优惠,去乙商店购买西服领带均可享受九折优惠;小李是公司的采购员,公司要采购20套西服,外加x条领带x20)(1)如果甲商店购买西服和领带,花费_元;如果乙商店购买西服和领带,花费_元(2)当x为多少时,在甲乙两家商店费用一样多?方案问题培优专用培优专用例 16.(2020河北文安初一期末)某市城市居民用电收费方式有以下两种:(甲)
12、普通电价:全天 0.53元/度;(乙)峰谷电价:峰时(早 8:00晚 21:00)0.56 元/度;谷时(晚 21:00 早 8:00)0.36元/度估计小明家下月总用电量为 200 度(1)若其中峰时电量为 50 度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为 200 度,用峰谷电费付费方式比 普通电价付费方式省了 14 元,求那月的峰时电量为多少度?方案问题培优专用培优专用【答案】(1)按普通电价付费:2000.53=106元,按峰谷电价付费:500.56+1500.36=82元所以按峰谷电价付电费合算,能省106-82=24元;(2)设那月
13、的峰时电量为x度,根据题意得:0.53200-0.56x+0.36(200-x)=14,解得x=100答:那月的峰时电量为100度例 17.(2019黑龙江甘南初一期末)元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠设某位顾客在元旦这天预计累计购物x元(其中x300)(1)当x=400时,顾客到哪家超市购物优惠(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同方案问题培优专用培优专用【答案】(1)由题意可得:当x=4
展开阅读全文