高考数学二轮课件:专题11圆锥曲线.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学二轮课件:专题11圆锥曲线.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 二轮 课件 专题 11 圆锥曲线 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、专题十一 圆锥曲线目 录CONTENTS 考点一 椭圆考点二 双曲线考点三 抛物线考点一 椭圆必备知识 全面把握核心方法 重点突破考法例析 成就能力必备知识 全面把握1椭圆的定义 (1)注意:若2a|F1F2|,则动点的轨迹是线段F1F2;若2a|F1F2|,|F1F2|2c,其中ac0,且a,c为常数考点一 椭圆 2.椭圆的标准方程考点一 椭圆3椭圆的几何性质考点一 椭圆7考点一 椭圆3椭圆的几何性质8 (1)椭圆的焦点总在长轴上;离心率表示椭圆的扁平程度当e越大时,椭圆越扁;当e越小时,椭圆越圆(2)椭圆的几何性质分类椭圆本身固有的性质(与坐标系无关),如:长轴长、短轴长、焦距、离心率等;
2、与坐标系有关的性质,如:顶点坐标、焦点坐标等在解题时要特别注意第类性质,先根据椭圆方程的形式判断出椭圆的焦点在哪个坐标轴上,然后再进行求解考点一 椭圆3椭圆的几何性质4椭圆中的特殊量考点一 椭圆10 对于椭圆 由焦半径公式 可得,椭圆上任一点P到焦点F1的最小距离为ac,最大距离为ac,此时点P在长轴的两端点处;由椭圆的对称性知,点P到焦点F2也有相同的结论(2)椭圆的焦点弦当直线和椭圆相交时,截在椭圆内的线段(包括端点)叫做椭圆的弦当弦过焦点时,称其为焦点弦设 是椭圆 上两点,若弦AB过左焦点F1,则考点一 椭圆11(3)椭圆的焦点三角形设F1,F2为椭圆 的左、右焦点,P为椭圆上异于左、右
3、顶点的点,则PF1F2为焦点三角形如图所示,考点一 椭圆12焦点三角形的周长是2(ac)若焦点三角形的内切圆圆心为I,延长PI交线段F1F2于点Q,(角平分线定理),所以 (和比定理)(4)椭圆的通径长过焦点且与焦点所在的轴垂直的直线被椭圆截得的弦叫做椭圆的通径设点P(x0,y0)是椭圆通径的一个端点,将 代入相应的焦半径公式,计算得 通径是最短的焦点弦考点一 椭圆13核心方法 重点突破方法1 求椭圆方程的方法 1椭圆标准方程的求法(1)定义法:根据椭圆的定义确定a2,b2的值,再结合焦点位置求出椭圆的标准方程其中常用的关系有b2a2c2;椭圆上任意一点到椭圆两焦点的距离之和等于2a;椭圆上一
4、短轴端点到椭圆两焦点的距离相等且等于实半轴长a.用此种方法求动点轨迹时,有时需根据题意舍去一些不符合题意的点,有时可能要分类讨论,不要漏解.考点一 椭圆14(2)待定系数法如果已知椭圆的中心在原点,且确定焦点所在位置,可设出相应形式的标准方程,然后根据条件确定出关于a,b,c的方程组,解出a2,b2,从而写出椭圆的标准方程(求得的方程可能是一个,也可能是两个,注意合理取舍,但不要漏解)当焦点位置不确定时,有两种方法可以解决:一种是分类讨论,注意考虑要全面;一种是已知椭圆的中心在原点,可以设椭圆的一般方程为mx2ny21(m0,n0,mn)求椭圆方程一般采取“先定位,后定量”的方法所谓定位,就是
5、研究一下此椭圆是不是标准形式的椭圆,其焦点在x轴上还是在y轴上;所谓定量就是求出椭圆的a,b,c,从而写出椭圆的方程考点一 椭圆152椭圆系方程考点一 椭圆16例1、求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(12,0),(12,0),椭圆上一点P到两焦点的距离的 和等于26;(2)焦点在坐标轴上,且经过点A(,2)和B(2,1);(3)焦距是2,且经过点P(,0)考点一 椭圆17考点一 椭圆18考点一 椭圆19考点一 椭圆20例2、考点一 椭圆2122方法2 椭圆定义的应用 椭圆定义的应用类型及方法(1)利用定义确定平面内的动点的轨迹是否为椭圆;(2)利用定义解决与焦点三角形
6、相关的周长、面积及最值问题利用定义和余弦定理可求得|PF1|PF2|,再结合 进行转化,进而求得焦点三角形的周长和面积其中|PF1|PF2|2a两边平方是常用技巧考点一 椭圆23考点一 椭圆例3、【答案】C24考点一 椭圆例4、【答案】D25考点一 椭圆例5、【答案】326方法3 椭圆的几何性质 1求椭圆离心率的方法考点一 椭圆272求椭圆离心率的取值范围的方法考点一 椭圆28例6、(1)安徽定远重点中学2018模拟在等腰梯形ABCD中,ABCD,tanABC2,AB6,CD2.若以A,B为焦点的椭圆经过C,D两点,则此椭圆的离心率为()考点一 椭圆29考点一 椭圆30考点一 椭圆31考点一
7、椭圆32【答案】(1)A (2)C (3)A考点一 椭圆33例7、(1)河南名校2018压轴第二次考试已知椭圆E:的右焦点为F,短轴的一个端点为M,直线l:5x12y0交椭圆E于A,B两点若|AF|BF|6,点M到直线l的距离不小于 ,则椭圆E的离心率的取值范围是()(2)江苏盐城中学2018考前热身已知 为椭圆 的两个焦点,P为椭圆上一点,且 则此椭圆离心率的取值范围是_.考点一 椭圆34考点一 椭圆35方法4 有关直线与椭圆位置关系的问题(1)位置关系的判断:直线方程与椭圆方程联立,消去y或x得到关于x或y的一元二次方程直线与椭圆相交0;直线与椭圆相切0;直线与椭圆相离b0)的右焦点为 过
8、点F的直线交E于A,B两点若AB的中点坐标为 则E的方程为()考点一 椭圆49考点一 椭圆50【答案】D考点一 椭圆51考法2 椭圆定义的应用 例2、辽宁201415已知椭圆 点M与C的焦点不重合若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|BN|_.【答案】12考点一 椭圆52考法3 椭圆的几何性质及其应用 例3、课标全国201812已知F1,F2是椭圆 的左、右焦点,A是C的左顶点,点P在过A且斜率为 的直线上,为等腰三角形,F1F2P120,则C的离心率为()考点一 椭圆53考点一 椭圆54考点一 椭圆【答案】D考点二 双曲线必备知识 全面把握核心方法 重点突破考
9、法例析 成就能力必备知识 全面把握1双曲线的定义 平面内与两定点F1,F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线两定点F1,F2是焦点,两焦点间的距离|F1F2|是焦距,用2c表示,常数用2a表示(1)若|MF1|MF2|2a,则曲线只表示焦点F2所对应的一支双曲线(2)若|MF1|MF2|2a,则曲线只表示焦点F1所对应的一支双曲线(3)若2a2c,动点的轨迹不再是双曲线,而是以F1,F2为端点向外的两条射线(4)若2a2c时,动点的轨迹不存在特别地,若a0,则动点的轨迹是线段F1F2的垂直平分线考点二 双曲线572双曲线的标准方程(1)它表示焦点F1(c,0),F
10、2(c,0)在x轴上的双曲线,且c2a2b2.(2)它表示焦点F1(0,c),F2(0,c)在y轴上的双曲线,且c2a2b2.考点二 双曲线58 (1)通过比较两种不同类型的双曲线方程 和 可以看出,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上双曲线方程中a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪个坐标轴上这一点与椭圆的判断方法不同(2)对于方程Ax2By2C(A,B,C均不为零),只有当AB0,n0,mn时为椭圆(特别地,当mn0时为圆);当mn0时为双曲线,而m,n的符号决定了双曲线焦点的位置考点二 双曲线593双曲线的几何性质
11、考点二 双曲线60考点二 双曲线61 (1)离心率e的取值范围为(1,).当e越接近于1时,双曲线开口越小;e越接近于时,双曲线开口越大.(2)双曲线的焦点永远在实轴上(3)双曲线的渐近线方程可以看成是将标准方程中等号右侧的1换成0后得到的两个方程双曲线与它的渐近线无限接近,但永不相交两条渐近线的倾斜角互补,斜率互为相反数,且关于x轴、y轴对称考点二 双曲线624两种特殊的双曲线(1)等轴双曲线定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线其方程为x2y2(0)性质:ab;e ;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项 (2)
12、共轭双曲线定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.性质:它们有共同的渐近线;它们的四个焦点共圆;它们离心率倒数的平方和等于1.考点二 双曲线635双曲线中的特殊量(1)双曲线的焦半径双曲线上的点P(x0,y0)与左(下)焦点F1,或右(上)焦点F2之间的线段长度称作焦半径,分别记作r1|PF1|,r2|PF2|.若点P在右支上,则 若点P在左支上,则 若点P在上支上,则 若点P在下支上,则考点二 双曲线64(2)双曲线的通径 过双曲线的焦点与双曲线实轴所在直线垂直的直线被双曲线截得的线段,称为双曲线的通径,其长为 (3)双曲线的焦点三角形
展开阅读全文