粉末冶金原理与模具课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《粉末冶金原理与模具课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 粉末冶金 原理 模具 课件
- 资源描述:
-
1、2022-12-161粉末冶金原理及模具粉末冶金原理及模具2022-12-1623.1 3.1 压制过程和精整过程中力的计算压制过程和精整过程中力的计算 3.2 3.2 压坯密度分布与压制方式的关系压坯密度分布与压制方式的关系 3.3 不等高压坯压模的设计原理粉末装填系数相同或相近压制时压缩比相同或相近压制速率相同或相近 3.4 组合模具的设计原理 第3章 粉末冶金模具设计原理目的目的目的目的目的目的 压坯:相对均匀的压实密度压坯:相对均匀的压实密度压坯:相对均匀的压实密度压坯:相对均匀的压实密度压坯:相对均匀的压实密度压坯:相对均匀的压实密度形状完整,具有一定强度形状完整,具有一定强度形状完
2、整,具有一定强度形状完整,具有一定强度形状完整,具有一定强度形状完整,具有一定强度3.5 压制过程的图示压制过程的图示2022-12-163压制压力的计算压制压力的计算模压过程的总压制力等于净压力与外摩擦力之和单位压制压力与压坯密度定量关系的研究,是近60年来粉末成形理论研究的主要内容脱模力的计算脱模力的计算压制压力去掉后,侧压力因为高度方向的弹性后效,侧压力会下降3577%2022-12-164在低速高单位压制压力条件下,塑性金属粉末易发生“模瘤”;模具表面质量差、润滑不良和模温过高,加重模瘤现象。严重时脱模压力超过压制压力,使得模具拉伤。无润滑塑性金属粉末应当避免高压压制 F脱静P侧剩S侧
3、 P侧剩ER剩(m2-1)/2R P侧剩=j0P2022-12-165其中:R剩:卸压后阴模半径上剩余的变形量;j:剩余侧压强与侧压强之比,决定于模具的刚度;m:阴模外径与内径之比;:压坯的相对密度当相对密度为:0.800.85时,m=24,可粗略估算:对于铁基:P侧剩=0.180.20P对于铜基:P侧剩=0.200.22P2022-12-166精整压力的计算精整压力的计算外箍内的精整:精整压力Fc=F1+F2+F3其中:F1为实现轴套纯变形所需要的力;F2为克服整形区外摩擦所需的力;F3克服内摩擦所需的力。精整压力计算公式Fc=Pc(S+Q)+0.58S2其中:Pc 为精整区的平均单位压力;
4、Q为阴模精整区的工作面积;为精整件的塑性变形抗力(三向压力);为阴模入口端的角度;S2为精整区轴套的横截面积2022-12-167内胀外精整精整压力计算与外箍内时相同;整形区的单位精整压力为 Pc=/1+(S+Q)/2S2在此:为单向压缩条件下材料塑性变形的抗力通常内胀外精整方式的精整压力几乎只有外箍内精整方式的十分之一材料塑性变形抗力与材质、组织和孔隙率密切关连2022-12-168压坯密度分布与压制方式的关系压坯密度分布与压制方式的关系压坯密度分布不均匀的地方,常常是压坯截面积发生变化的分界处;脱模时这种部位也容易产生裂纹,烧结时易引起变形。影响压坯密度分布均匀性的因素:粉末成分和性能模具
5、表面质量摩擦力压制时粉体产生柱式流动,几乎不产生明显的横向流动2022-12-169压坯中中立层的位置可以表示压坯密度分布的均匀程度。通过压制方式和压模结构合理选择使中立层2边受相同压缩,提高密度分布均匀性2022-12-1610d粉粉粉末松装密度;粉末松装密度;d1第一次压制后压坯平均密度;第一次压制后压坯平均密度;第一次压制后:第一次压制后:d粉粉H粉粉=d1h1x=h1-hd粉粉H粉粉=d1(h+x)x=(d粉粉H粉粉-d1h)/d1第二次压制后:第二次压制后:d粉粉H粉粉=dhd粉粉=d h/H粉粉x=(d-d1)h/d1;k=H粉粉/h=(l+h)/hx=(d-d1)l/d1(k-1
6、);y=x/l 100%2022-12-1611压力相等时双向压制与非同时双向压制的效压力相等时双向压制与非同时双向压制的效果相同果相同非同时双向压制中第二次压制的模冲移动距离:x=(d2-d1)h/d1 或者 y=x/l=100(d2-d1)/d1(k-1)其中:d2为要求的压坯平均密度;d1为单向压制的平均密度;h为压坯高度;k为压缩比;l为装粉高度与压坯高度之差。2022-12-1612非同时双向压制原理为压模结构设计提供了非同时双向压制原理为压模结构设计提供了压坯密度均匀分布的理论基础;也为粉末压压坯密度均匀分布的理论基础;也为粉末压机的设计提供了重要基础,使得多凸轮和凸机的设计提供了
7、重要基础,使得多凸轮和凸轮曲柄粉末压机更好地满足粉末压坯密度均轮曲柄粉末压机更好地满足粉末压坯密度均匀分布的要求。匀分布的要求。2022-12-1613摩擦压制摩擦压制在压制过程中,让阴模或芯杆与样品侧面产生同向相对移动,即运动得更快,借助粉末与模壁之间的摩擦,带动与阴模或芯杆接触的粉末层移动,从而可改善沿压坯高度方向的密度分布均匀性。2022-12-16142022-12-16152022-12-1616压制方式的选择依据压制方式的选择依据压制方式和方法不同,上、下模冲、芯杆和阴压制方式和方法不同,上、下模冲、芯杆和阴模相对于粉末压坯的相对运动方向及速度也不模相对于粉末压坯的相对运动方向及速
8、度也不同,从而使外摩擦对压坯密度的均匀分布产生同,从而使外摩擦对压坯密度的均匀分布产生有害或者有利的影响。有害或者有利的影响。单向压制单向压制S侧侧max/S=1-(下下/上上)m/=K当柱状压坯当柱状压坯S侧侧/SK或者圆柱体压坯高径比或者圆柱体压坯高径比H/DK/4时,采用单向压制可以满足压坯密度时,采用单向压制可以满足压坯密度分布均匀性的要求分布均匀性的要求2022-12-16172022-12-1618双向压制S侧max/S=1-(中/上)m/=2K当柱状压坯KS侧/S2K,或者圆柱体K/4H/DK/2时,采用双向压制、非同时双向压制、浮动阴模双向压制或者下拉式压制可以满足压坯密度分布
9、均匀性要求2022-12-16192022-12-1620摩擦芯杆压制上模冲强迫芯杆一起向下移动,且芯杆下移的速度大于粉末下移的速度,因而靠芯杆与粉末之间的摩擦力带动粉末向下移动。(S侧阴-S侧芯)/Smax=1-(下/上)m/=K对于圆筒形压坯的高与壁厚之比:h/T=K(1+D内/T)/2摩擦芯杆压制特别适合于大孔薄壁压坯2022-12-1621选择原则选择原则(S侧阴侧阴+S侧芯侧芯)/SK或者圆筒形压坯或者圆筒形压坯h/TK时,如果时,如果(S侧阴侧阴+S侧芯侧芯)/2(S侧阴侧阴-S侧芯侧芯),或者圆筒形压坯或者圆筒形压坯D内内K时,如果时,如果(S侧阴侧阴+S侧芯侧芯)/2(S侧阴侧
10、阴-S侧芯侧芯),或者圆筒形压坯或者圆筒形压坯D内内T,可采用摩擦芯杆压制,可采用摩擦芯杆压制2022-12-16222022-12-16232022-12-1624不等高压坯压模的设计原理不等高压坯压模的设计原理影响压制过程中粉末流动方式的因素:影响压制过程中粉末流动方式的因素:粉末的流动性粉末的流动性装粉方法装粉方法外摩擦力外摩擦力上下模冲设计上下模冲设计压坯横截面形状压坯横截面形状在压制的不同阶段,粉末流动方式也不同在压制的不同阶段,粉末流动方式也不同2022-12-1625装粉阶段装粉阶段粉末以散状流动的方式充填模腔,由于摩擦力的粉末以散状流动的方式充填模腔,由于摩擦力的影响容易产生影
11、响容易产生“拱桥拱桥”现象。现象。采用添加润滑剂、振动装粉、过量装粉和吸入装采用添加润滑剂、振动装粉、过量装粉和吸入装粉方法可以消除拱桥现象。粉方法可以消除拱桥现象。压制开始阶段压制开始阶段拱桥现象被破坏;当压坯各横截面上的粉末受到拱桥现象被破坏;当压坯各横截面上的粉末受到相同程度的压缩时,只发生柱状流动;如果压坯相同程度的压缩时,只发生柱状流动;如果压坯各横截面上的粉末受到不同程度的压缩,先受压各横截面上的粉末受到不同程度的压缩,先受压缩或者受压缩程度大的截面上的粉末会向其他处缩或者受压缩程度大的截面上的粉末会向其他处发生横向流动。发生横向流动。是否发生横向流动取决于各截面的受压缩程度和是否
12、发生横向流动取决于各截面的受压缩程度和模冲形状模冲形状2022-12-1626压制最后阶段压制最后阶段相邻截面由于高压力的作用可能形成滑动面,导相邻截面由于高压力的作用可能形成滑动面,导致剥落和裂纹,该现象特别容易发生在压坯的截致剥落和裂纹,该现象特别容易发生在压坯的截面变化分界处面变化分界处不等高压坯压模的设计原理不等高压坯压模的设计原理粉末填装系数相同或相近粉末填装系数相同或相近压坯密度分布的均匀性首先决定于装粉高度压坯密度分布的均匀性首先决定于装粉高度粉末填装系数粉末填装系数K=H粉粉/h压压=d压压/d粉粉,其大小等于压缩,其大小等于压缩比比先受压缩或者受压缩程度大的横截面上的粉末填先
13、受压缩或者受压缩程度大的横截面上的粉末填装系数应比高度小的横截面上大装系数应比高度小的横截面上大0.10.52022-12-1627压制时压缩比相同或相近压制时压缩比相同或相近保证各横截面上的粉末受到相同或相近的压缩比保证各横截面上的粉末受到相同或相近的压缩比各个模冲的移动距离不同:各个模冲的移动距离不同:l=(k-1)H粉粉/k组合模冲设计中,各个模冲在压制过程中应该按照组合模冲设计中,各个模冲在压制过程中应该按照压缩比相同或相近的要求移动不同距离压缩比相同或相近的要求移动不同距离压制速率相同压制速率相同为了避免滑动面,压坯各横截面上粉末的压制速率为了避免滑动面,压坯各横截面上粉末的压制速率
14、应该相等应该相等压制速率压制速率=(V粉粉-V压压)/V粉粉t;即单位时间内粉末被压;即单位时间内粉末被压缩减小的体积与压制前粉末松装体积的比缩减小的体积与压制前粉末松装体积的比2022-12-1628在压制不等高压坯时,各个模冲移动的距离和速度在压制不等高压坯时,各个模冲移动的距离和速度是不同的,但各个模冲的压制速率应该相同是不同的,但各个模冲的压制速率应该相同对于高度不同的对于高度不同的A、B横截面,当压制速率相同时横截面,当压制速率相同时满足以下关系:满足以下关系:VA/H粉粉A=VB/H粉粉B,V为压制速度为压制速度为减少粉末横向流动实际常用的压制方法:先压缩为减少粉末横向流动实际常用
展开阅读全文