第五章医用陶瓷材料教材课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第五章医用陶瓷材料教材课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 医用 陶瓷材料 教材 课件
- 资源描述:
-
1、u5.1 概述概述u5.2 5.2 陶瓷结构与性能的关系陶瓷结构与性能的关系u5.3 5.3 磷酸钙陶瓷磷酸钙陶瓷u5.4 5.4 生物活性玻璃与生物微晶玻璃生物活性玻璃与生物微晶玻璃u5.5 5.5 其它生物陶瓷其它生物陶瓷u5.6 5.6 陶瓷材料的增韧强化陶瓷材料的增韧强化u5.7 5.7 陶瓷基生物医用复合材料陶瓷基生物医用复合材料第五章 生物医用陶瓷材料5.1概述1)陶瓷(无机非金属材料)的基本概念及分类 陶瓷是指用天然或人工合成的粉状化合物经过成型和高温烧结制成的、由金属和非金属元素的无机化合物构成的多晶或非晶固体材料。陶瓷可分为 普通陶瓷(传统陶瓷)和特种陶瓷(近代陶瓷)。传统的
2、陶瓷都是以由硅、铝、氧三种主要元素形成的天然硅酸盐矿硅酸盐矿物为主要原料(如粘土、长石、硅石)制成的材料。而把近代陶瓷称为“新型陶瓷”(New Ceramics)或“精细陶瓷”(Fine Ceramics)普通陶瓷加工成型性好,普通陶瓷加工成型性好,成本低,产量大。成本低,产量大。除日用陶瓷、瓷器外,除日用陶瓷、瓷器外,大量用于电器、化工、大量用于电器、化工、建筑、纺织等工业部门。建筑、纺织等工业部门。景德镇瓷器景德镇瓷器绝缘子绝缘子 特种陶瓷特种陶瓷原料是人工提炼的,即纯度较高原料是人工提炼的,即纯度较高的的金属氧化物金属氧化物、碳化物碳化物、氮化物氮化物等化合物。等化合物。这类陶瓷具有一些
3、独特的性能这类陶瓷具有一些独特的性能,可满足工程可满足工程结构的特殊需要结构的特殊需要.属于这类陶瓷的有压电陶属于这类陶瓷的有压电陶瓷、高温陶瓷、高强度陶瓷、生物医用陶瓷、高温陶瓷、高强度陶瓷、生物医用陶瓷、半导体陶瓷、环保陶瓷,等瓷、半导体陶瓷、环保陶瓷,等等.氧化铝陶瓷氧化铝陶瓷 氧化铝陶瓷以氧化铝陶瓷以Al2O3为主要成分为主要成分,含有少量含有少量SiO2的陶瓷,又称高的陶瓷,又称高铝陶瓷。铝陶瓷。Al2O3化工、耐磨陶化工、耐磨陶瓷配件瓷配件Al2O3密封、气动密封、气动陶瓷配件陶瓷配件氧化锆陶瓷氧化锆陶瓷ZrO22)生物陶瓷的基本概念及分类生物陶瓷的基本概念及分类 生物陶瓷生物陶瓷
4、是是通过植入人体或是与人体组织直接接触,使机体通过植入人体或是与人体组织直接接触,使机体功能得以恢复或增强可使用的陶瓷。功能得以恢复或增强可使用的陶瓷。图图4-1是几种常见的生是几种常见的生物陶瓷制品。物陶瓷制品。人工髋关节人工髋关节羟磷灰石生物陶瓷人工骨羟磷灰石生物陶瓷人工骨全瓷牙全瓷牙几种常见的生物陶瓷制品几种常见的生物陶瓷制品生物陶瓷的分类 根据种植材料与生物体组织的反应程度反应程度,可将生物陶瓷分为三类:生物惰性陶瓷生物惰性陶瓷、生物活生物活性陶瓷性陶瓷和和生物可降解生物可降解(吸收)(吸收)陶瓷陶瓷。1)生物惰性陶瓷生物惰性陶瓷在生物体内化学性质稳定,生物相容性好,在生物体内化学性质
5、稳定,生物相容性好,无组成元素溶出,对机体无刺激的陶瓷。无组成元素溶出,对机体无刺激的陶瓷。如如氧化铝氧化铝陶瓷陶瓷,氧化锆氧化锆陶瓷陶瓷、碳素材料(碳素材料(C),),氮化硅(氮化硅(Si3N4)等)等2)生物活性陶瓷)生物活性陶瓷 材料的生物活性材料的生物活性:即生物材料在体液环境下通过化:即生物材料在体液环境下通过化学键和周围活体组织紧密结合的能力。学键和周围活体组织紧密结合的能力。生物活性陶瓷:生物活性陶瓷:在生理环境中可通过其表面发生的在生理环境中可通过其表面发生的生物化学反应生物化学反应与骨组织形成化学键合。与骨组织形成化学键合。羟基磷灰石羟基磷灰石 CaCa1010(PO(PO4
6、 4)6 6(OH)(OH)2 2生物活性玻璃生物活性玻璃 NaNa2 2O-CaO-PO-CaO-P2 2O O5 5-SiO-SiO2 2生物活性玻璃陶瓷生物活性玻璃陶瓷3)生物可降解陶瓷(生物吸收陶瓷)生物可降解陶瓷(生物吸收陶瓷)(Biodegradable)这类材料在生物体内能诱导骨质生长,并这类材料在生物体内能诱导骨质生长,并逐步降解、吸收,被新生骨取代,从而达逐步降解、吸收,被新生骨取代,从而达到修复或替换病损组织的目的到修复或替换病损组织的目的。磷酸三钙磷酸三钙 Ca3(PO4)2,TCP三种生物陶瓷材料与骨结合的形式三种生物陶瓷材料与骨结合的形式:生物惰性陶瓷:植入人体后成纤
7、维细胞在其表面增生物惰性陶瓷:植入人体后成纤维细胞在其表面增殖,最终形成纤维组织包囊,形成纤维接触界面。殖,最终形成纤维组织包囊,形成纤维接触界面。生物活性陶瓷(生物反应性陶瓷):与成骨细胞较生物活性陶瓷(生物反应性陶瓷):与成骨细胞较成纤维细胞更易在其表面增殖,从而和新生骨直接成纤维细胞更易在其表面增殖,从而和新生骨直接结合,形成骨性结合,而不会在界面处产生纤维组结合,形成骨性结合,而不会在界面处产生纤维组织包囊。织包囊。生物吸收陶瓷:存在新骨形成并伴随陶瓷材料降解生物吸收陶瓷:存在新骨形成并伴随陶瓷材料降解。5.2 陶瓷结构与性能的关系陶瓷结构与性能的关系 陶瓷材料是由共价键或离子键结合,
8、含有金属与陶瓷材料是由共价键或离子键结合,含有金属与非金属元素的复杂化合物和固溶体。非金属元素的复杂化合物和固溶体。陶瓷材料的陶瓷材料的晶体结构比金属材料复杂且表面能小。因此其强晶体结构比金属材料复杂且表面能小。因此其强度度(抗压强度)(抗压强度)、硬度、弹性模量、耐磨性、耐、硬度、弹性模量、耐磨性、耐蚀性和耐热性要优于金属。但陶瓷的最大缺点是蚀性和耐热性要优于金属。但陶瓷的最大缺点是韧性差,脆性极大,抵抗内部裂纹扩展能力很低,韧性差,脆性极大,抵抗内部裂纹扩展能力很低,所以容易发生脆性断裂。所以容易发生脆性断裂。5.2.1 陶瓷的结构陶瓷的结构 一般来说,陶瓷是一种多晶材料,它是由晶粒和一般
9、来说,陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体,晶界所组成的烧结体,显微组织由晶体相,玻璃相显微组织由晶体相,玻璃相和气相组成和气相组成。由于各相的相对量变化很大,分布也。由于各相的相对量变化很大,分布也不均匀,所以使各相的组成,结构,数量,几何形不均匀,所以使各相的组成,结构,数量,几何形状及分布状况都不相同,直接影响陶瓷材料的性能。状及分布状况都不相同,直接影响陶瓷材料的性能。陶瓷的组成陶瓷的组成1.1.结晶相:主要组成相(如结晶相:主要组成相(如Al2O3Al2O3),),由离子键或共价键结合而成,决定陶由离子键或共价键结合而成,决定陶瓷的性能:高熔点、高耐热性、高化瓷的性能:
10、高熔点、高耐热性、高化学稳定性、高绝缘性、高脆性。学稳定性、高绝缘性、高脆性。2 2 玻璃相:非晶态固体(如石英玻璃),玻璃相:非晶态固体(如石英玻璃),将晶相粘结在一起,降低烧结温度,抑将晶相粘结在一起,降低烧结温度,抑制晶相晶粒长大和填充气孔。制晶相晶粒长大和填充气孔。3 3 气相:气孔(气相:气孔(5 51010)。)。对性能的不利影响:增加脆性、降低强度、电击穿强度降对性能的不利影响:增加脆性、降低强度、电击穿强度降低,绝缘性能降低。低,绝缘性能降低。对性能的有利影响:提高吸振性,使陶瓷对性能的有利影响:提高吸振性,使陶瓷密度减小密度减小 陶瓷的结构类型可以用陶瓷的结构类型可以用AmX
11、n表示(表表示(表4-2)。)。A代表金属元代表金属元素;素;X代表非金属元素;代表非金属元素;m和和n代表整数。最简单的陶瓷化合代表整数。最简单的陶瓷化合物物为为AX型陶瓷晶体。型陶瓷晶体。AX化合物化合物有三种形式,主要取决于原子的半径比率。如果有三种形式,主要取决于原子的半径比率。如果RA/RX0.732则为一则为一简单的立方体结构简单的立方体结构,如,如CsCl结构,结构,A原原子(或离子)位于子(或离子)位于8个个X原子的中心。如果离子的半径比率原子的中心。如果离子的半径比率完全不同,则呈现完全不同,则呈现出面心立方体出面心立方体结构,如结构,如NaCl、KCl、LiF、MgO、Ca
12、O、MnO等化合物,这类结构以阴离子为面心立等化合物,这类结构以阴离子为面心立方点阵,阳离子位于其晶胞和棱边的中心;也可以方点阵,阳离子位于其晶胞和棱边的中心;也可以非立方结非立方结构构的形式存在,如的形式存在,如ZnS、FeS、ZnO等,其结构原子排列比等,其结构原子排列比较复杂,较复杂,形成硬而脆的陶瓷形成硬而脆的陶瓷材料。材料。化合物A(或X)晶格配位数位置填满最小值RA/RX其他化合物CsClBCC8全部0.732CslNaClFCC6全部0.414MgO、MnSZnSFCC41/20.225CdS、ZnOAl2O3HCP62/30.414Cr2O3、Fe2O3表4-2 AmXn结构
13、当陶瓷化合物的金属离子和非金属离子不同时,构成当陶瓷化合物的金属离子和非金属离子不同时,构成萤石型萤石型结构或刚玉型结构或刚玉型结构。萤石结构的氧化物有结构。萤石结构的氧化物有CeO2、PrO2、ZrO2等(图等(图4-2)。刚玉(刚玉(Al2O3)型结构的氧化物有)型结构的氧化物有Fe2O3、Cr2O3、Ti2O3、Ca2O3等(图等(图4-3)。)。图图4-2 萤石的点阵结构萤石的点阵结构图图4-3 刚玉的点阵结构刚玉的点阵结构陶瓷材料的工艺特点陶瓷材料的工艺特点 陶瓷是脆性材料,大部分陶瓷是通过粉体成型和高陶瓷是脆性材料,大部分陶瓷是通过粉体成型和高温烧结来成形的,因此陶瓷是烧结体。温烧
14、结来成形的,因此陶瓷是烧结体。烧结体也是晶粒的聚集体,有晶粒和晶界,所存在烧结体也是晶粒的聚集体,有晶粒和晶界,所存在的问题是其存在一定的气孔率。的问题是其存在一定的气孔率。Al2O3粉末的烧结组织粉末的烧结组织ZrO2陶瓷中的气孔陶瓷中的气孔5.2.2陶瓷材料的力学性能弹性弹性 (1)弹性模量大弹性模量大 E值大,值大,是金属材料的是金属材料的2 2倍以上。倍以上。共价键结构有较高的抗晶格畸变、共价键结构有较高的抗晶格畸变、阻碍位错运动的阻力。阻碍位错运动的阻力。晶体结构复杂,滑移系很少,位错晶体结构复杂,滑移系很少,位错运动困难。运动困难。(2 2)弹性模量呈方向性:压缩模)弹性模量呈方向
15、性:压缩模量高于拉伸弹性模量。量高于拉伸弹性模量。结构不均匀性:缺陷。结构不均匀性:缺陷。(3 3)气孔率)气孔率,弹性模量,弹性模量强度强度抗压强度抗压强度比抗拉强度高得多,比抗拉强度高得多,1010倍左右。倍左右。但抗拉但抗拉强度和剪切强度却很低强度和剪切强度却很低(由于陶瓷内部有大量空(由于陶瓷内部有大量空洞,拉伸时应力集中大,为脆性材料)。洞,拉伸时应力集中大,为脆性材料)。l 硬度高硬度高、耐蚀性高耐蚀性高耐磨性高耐磨性高:其耐磨性远高于金属,而且在高温、腐蚀环境下其耐磨性远高于金属,而且在高温、腐蚀环境下更显示出其独特的优越性。更显示出其独特的优越性。最重要的耐磨陶瓷材料是最重要的
16、耐磨陶瓷材料是氧化铝、氧化锆和氮氧化铝、氧化锆和氮化硅陶瓷等。化硅陶瓷等。塑性塑性:室温下,绝大多数陶瓷材料塑性变形极小。室温下,绝大多数陶瓷材料塑性变形极小。热性能热性能 陶瓷材料一般具有高熔点陶瓷材料一般具有高熔点(大多在(大多在2000C以上),极好以上),极好的化学稳定性和很强的抗氧化等特点。的化学稳定性和很强的抗氧化等特点。陶瓷材料的线膨胀系数一般都很小,约为陶瓷材料的线膨胀系数一般都很小,约为10-510-6/K。在目前研究和使用的硬组织替换生物材料中,磷酸钙生物在目前研究和使用的硬组织替换生物材料中,磷酸钙生物陶瓷占有很大的比重陶瓷占有很大的比重,主要是因为磷酸钙生物陶瓷具有,主
17、要是因为磷酸钙生物陶瓷具有良好的生物相容性和生物活性,对人体无毒、无害、无致良好的生物相容性和生物活性,对人体无毒、无害、无致癌作用,并可以和自然骨通过体内的生物化学反应成为牢癌作用,并可以和自然骨通过体内的生物化学反应成为牢固的骨性结合。固的骨性结合。5.3 磷酸钙陶瓷磷酸钙陶瓷5.3.1 概述 磷酸钙生物陶瓷主要包括磷灰石和磷酸三钙,作为磷酸钙生物陶瓷主要包括磷灰石和磷酸三钙,作为生物材料使用的磷灰石一般是生物材料使用的磷灰石一般是Ca与与P原子比为原子比为1.67的的羟基磷灰石羟基磷灰石Ca10(PO4)6(OH)2(Hydroxylapatite,简称,简称HA),磷酸三钙是,磷酸三钙
18、是Ca与与P原子比为原子比为 1.5的的-磷酸三钙磷酸三钙-Ca3(PO4)2(Tricalcium Phosphate,简称,简称-TCP)。磷酸钙陶瓷粉末的制备磷酸钙陶瓷粉末的制备制备块状磷酸钙陶瓷的第一步是磷酸钙陶瓷粉末的制备,主要制备块状磷酸钙陶瓷的第一步是磷酸钙陶瓷粉末的制备,主要有湿法和固态反应法。湿法包括:有湿法和固态反应法。湿法包括:水热反应法、水溶液沉淀水热反应法、水溶液沉淀法以及溶胶凝胶法法以及溶胶凝胶法等等等等。各种制备工艺的研究目标是得到成各种制备工艺的研究目标是得到成分均匀、粒度微细的磷酸钙粉末。分均匀、粒度微细的磷酸钙粉末。磷酸钙陶瓷的烧结磷酸钙陶瓷的烧结 制备致密
19、磷酸钙陶瓷的主要方法是粉末烧结技术。制备致密磷酸钙陶瓷的主要方法是粉末烧结技术。磷酸钙陶瓷粉末先要压制成需要的形状,然后在磷酸钙陶瓷粉末先要压制成需要的形状,然后在10001500进行烧结。以进行烧结。以Ca与与P原子比为原子比为1.67的磷灰石粉末为原料,可得到的磷灰石粉末为原料,可得到HA陶瓷;以陶瓷;以Ca与与P原原子比为子比为1.5的磷灰石粉末为原料,可得到的磷灰石粉末为原料,可得到-TCP陶瓷。陶瓷。磷酸钙生物陶瓷的力学性能与应用磷酸钙生物陶瓷的力学性能与应用 致密磷酸钙陶瓷的力学性能见表致密磷酸钙陶瓷的力学性能见表5-1。从力学相容从力学相容的角度来看,作为硬组织替换用的磷酸钙盐至
20、少应的角度来看,作为硬组织替换用的磷酸钙盐至少应与被替换的器官有相近的强度和弹性模量。与被替换的器官有相近的强度和弹性模量。脆性脆性是是制约磷酸钙生物陶瓷临床应用的主要因素之一制约磷酸钙生物陶瓷临床应用的主要因素之一。改改善磷酸钙盐陶瓷的脆性,使其能应用到大块骨缺损善磷酸钙盐陶瓷的脆性,使其能应用到大块骨缺损的修复及承力部位,成为这一领域中材料研究急需的修复及承力部位,成为这一领域中材料研究急需解决的问题。解决的问题。性能性能烧结羟基磷烧结羟基磷灰石灰石烧结烧结-磷酸磷酸三钙三钙皮质骨皮质骨 成分成分Ca10(OH)2(PO4)4(99.2%)-Ca3(PO4)2(99.7%)物相物相磷灰石磷
21、灰石磷钙矿磷钙矿密度密度(g/cm3)3.163.071.62.1维氏硬度维氏硬度(HV)600压缩强度压缩强度(MPa)5001000460680100230弯曲强度弯曲强度(MPa)11520014015450150杨氏模量杨氏模量(GPa)801102290730断裂韧性断裂韧性1.0212表表5-1 磷酸钙生物陶瓷的力学性能磷酸钙生物陶瓷的力学性能 磷酸钙生物陶瓷材料的发展趋势磷酸钙生物陶瓷材料的发展趋势1)增韧补强增韧补强。磷酸钙陶瓷可以通过添加增强相提高磷酸钙陶瓷可以通过添加增强相提高它的断裂韧性,它的断裂韧性,磷酸钙陶瓷基复合材料磷酸钙陶瓷基复合材料,已经成为,已经成为磷酸钙生物
22、陶瓷的发展方向之一。磷酸钙生物陶瓷的发展方向之一。2)基于仿生原理,制备类似于自然组织的组成、基于仿生原理,制备类似于自然组织的组成、结构和性质的理想生物陶瓷结构和性质的理想生物陶瓷,是生物陶瓷的,是生物陶瓷的另另一个一个发展方向。组成和结构类似于骨骼连续变化的发展方向。组成和结构类似于骨骼连续变化的多孔多孔磷酸钙陶瓷磷酸钙陶瓷的研究是正在进行的课题。的研究是正在进行的课题。5.3.2 羟基磷灰石羟基磷灰石 羟基磷灰石羟基磷灰石(Hydroxyapatite,HA)是人体和动物骨是人体和动物骨骼、牙齿的主要无机成分,在骨质中,羟基磷灰石大约骼、牙齿的主要无机成分,在骨质中,羟基磷灰石大约占占6
23、0,它是一种长度为,它是一种长度为200400mm,厚度,厚度1530mm的针状结晶,其周围规则地排列着骨胶原纤维的针状结晶,其周围规则地排列着骨胶原纤维。HA由于其具有良好的生物活性和生物相容性,植入人由于其具有良好的生物活性和生物相容性,植入人体后能在短时间内与人体的软硬组织形成紧密结合而成体后能在短时间内与人体的软硬组织形成紧密结合而成为广泛应用的植骨代用品。但为广泛应用的植骨代用品。但HA生物陶瓷脆性高、抗生物陶瓷脆性高、抗折强度低折强度低,目前仅能应用于非承载的小型种植体目前仅能应用于非承载的小型种植体,如如人人工齿根、耳骨、充填骨缺损工齿根、耳骨、充填骨缺损等等,而而不能在受载场合
24、下应不能在受载场合下应用用。图4-4 骨质中HA的扫描电子显微镜照片羟基磷灰石的晶体结构羟基磷灰石的晶体结构羟基磷灰石理论组成为羟基磷灰石理论组成为Ca10(PO4)6(OH)2,Ca/P为为1.67。HA晶体为晶体为六方晶系六方晶系,单位晶胞含有,单位晶胞含有10个个Ca2+、6个个PO43和和2个个OH-。沉淀法沉淀法 通过把一定浓度的钙盐和磷盐混合搅拌,控制在通过把一定浓度的钙盐和磷盐混合搅拌,控制在一定的一定的pH值和温度条件下,使溶液中发生化学反应值和温度条件下,使溶液中发生化学反应生成生成HA沉淀,沉淀物在沉淀,沉淀物在400600甚至更高的温度甚至更高的温度下煅烧,可获得符合一定
25、比例的下煅烧,可获得符合一定比例的HA晶体粉末。晶体粉末。10Ca(NO3)2+6(NH4)2HPO4+8NH3H2O Ca10(PO4)6(OH)2+20NH4NO3+6H2O羟基磷灰石粉末的制备羟基磷灰石粉末的制备水热法水热法 水热法是在特制的密闭反应容器中水热法是在特制的密闭反应容器中(高压釜高压釜),采用,采用水溶液作为反应介质,水溶液作为反应介质,在高温高压环境中,使得原来在高温高压环境中,使得原来难溶或不溶的物质溶解并重结晶的方法。难溶或不溶的物质溶解并重结晶的方法。这种方法通这种方法通常以磷酸氢钙等为原料,在水溶液体系,温度为常以磷酸氢钙等为原料,在水溶液体系,温度为200400
展开阅读全文